Your Selections

Andrie, Michael
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

 

Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines

Adiabatics Inc.-Lloyd S. Kamo, Alex Kamo
Briggs & Stratton-David Procknow
Published 2019-04-02 by SAE International in United States
A new generation of low heat capacitance Thermal Barrier Coatings (TBCs) has been developed under U.S. Dept. of Energy / Advanced Research Projects Agency - Energy (ARPA-E) sponsored research. The TBCs developed under this project have significantly lower thermal conductivity of < 0.35 W/m-K, thermal heat capacitance of < 500 kJ/m3-K, and density of <0.35 g/cm3. Two different binder types were used for thermal barrier coatings applied by High Velocity Low Pressure (HVLP) spraying to the piston, cylinder head, and valve combustion surfaces of a small natural gas engine. The effects of thermal barrier coatings on engine efficiency and knock characteristics were studied in a small, high compression ratio, spark-ignition, internal combustion engine operating on methane number fuels from 60 to 100. The new TBCs with low thermal conductivity and low thermal heat capacities have been shown to increase overall engine efficiency through reduced heat transfer to the piston and cylinder head. These improved TBC properties resulted in 1.3% improved thermal efficiency or a 4.6% reduction in fuel consumption on the natural gas engine through…
Datasets icon
Annotation icon
 

Experimental Investigation of Transient Response and Turbocharger Coupling for High and Low Pressure EGR Systems

SAE International Journal of Engines

University of Wisconsin-David Heuwetter, William Glewen, David E. Foster, Roger Krieger, Michael Andrie
  • Journal Article
  • 2014-01-1367
Published 2014-04-01 by SAE International in United States
The transient response of an engine with both High Pressure (HP) and Low Pressure (LP) EGR loops was compared by conducting step changes in EGR fraction at a constant engine speed and load. The HP EGR loop performance was shown to be closely linked to turbocharger performance, whereas the LP EGR loop was relatively independent of turbocharger performance and vice versa. The same experiment was repeated with the variable geometry turbine vanes completely open to reduce turbocharger action and achieve similar EGR rate changes with the HP and LP EGR loops. Under these conditions, the increased loop volume of the LP EGR loop prolonged the response of intake O2 concentration following the change in air-fuel ratio. The prolonged change of intake O2 concentration caused emissions to require more time to reach steady state as well. Strong coupling between the HP EGR loop and turbochargers was again observed using a hybrid EGR strategy. The potential benefit of the HP EGR loop's smaller volume and shorter residence time was largely negated by the simultaneous use of the…
Annotation icon
 

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

General Motors Company-Russ Durrett
Univ. of Wisconsin Madison-Paul Loeper, Youngchul Ra, Cory Adams, David E. Foster, Jaal Ghandhi, Michael Andrie, Roger Krieger
Published 2013-04-08 by SAE International in United States
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.With constraints of combustion efficiency, noise level (pressure rise rate) and emissions, engine operation sensitivity due to changes in inlet temperature between 50-90C was first examined for fixed fueling rates. This experiment was then repeated at different inlet pressures and engine speeds. Finally, constant load experiments were performed in which perturbations in injection strategies (timing, duration, and pressure) were executed to assess overall system sensitivity.…
Annotation icon
 

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

SAE International Journal of Engines

University of Wisconsin-William Glewen, David Heuwetter, David E. Foster, Michael Andrie, Roger Krieger
  • Journal Article
  • 2012-01-1067
Published 2012-04-16 by SAE International in United States
Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Annotation icon
 

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

SAE International Journal of Engines

General Motors Company-Russ Durrett
University of Wisconsin-Madison-Youngchul Ra, Paul Loeper, Michael Andrie, Roger Krieger, David E. Foster, Rolf D. Reitz
  • Journal Article
  • 2012-01-1131
Published 2012-04-16 by SAE International in United States
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.With constraints on a minimum allowable combustion efficiency, maximum allowable noise level (pressure rise rate) and maximum allowable NOx and soot emissions, engine operation ranges were identified as functions of injection timings and the fuel split ratio (i.e., fraction of total fuel injected in each pulse) with triple-pulse…
Annotation icon
 

Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver

University of Wisconsin Madison-John Kaddatz, Michael Andrie, Rolf D. Reitz, Sage Kokjohn
Published 2012-04-16 by SAE International in United States
Premixed compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions and diesel-like efficiency. However, these strategies are generally confined to low loads due to difficulties controlling the combustion phasing and heat release rate. Recent experiments have demonstrated that dual-fuel reactivity-controlled compression ignition (RCCI) combustion can improve PCI combustion control and expand the PCI load range. Previous studies have explored RCCI operation using port-fuel injection (PFI) of gasoline and direct-injection (DI) of diesel fuel. In this study, experiments are performed using a light-duty, single-cylinder research engine to investigate RCCI combustion using a single fuel with the addition of a cetane improver 2-ethylhexyl nitrate (EHN). The fuel delivery strategy consists of port-fuel injection of E10 (i.e., 10% ethanol in gasoline) and direct-injection of E10 mixed with 3% EHN. The results using the E10+EHN strategy are compared to an E10+diesel dual-fuel strategy.It was found that the additized E10 blend performed similar to diesel fuel and was capable of achieving controlled PCI operation over a range of conditions. In contrast to previous low-temperature combustion…
Annotation icon
 

Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion

University of Wisconsin-David Heuwetter, William Glewen, Christopher Meyer, David E. Foster, Michael Andrie, Roger Krieger
Published 2011-09-11 by SAE International in United States
Low pressure EGR offers greater effectiveness and flexibility for turbocharging and improved heat transfer compared to high pressure EGR systems. These characteristics have been shown to provide potential for further NOx, soot, and fuel consumption reductions in modern diesel engines. One of the drawbacks is reduced transient response capability due to the long EGR path. This can be largely mitigated by combining low pressure and high pressure loops in a hybrid EGR system, but the changes in transient response must be considered in the design of an effective control strategy.The effect of low pressure EGR on transient emissions was evaluated using two different combustion strategies over a variety of transient events. Low pressure EGR was found to significantly lengthen the response time of intake oxygen concentration following a transient event, which can have a substantial effect on emissions formation. The difference in response time between the two EGR systems has important implications for prediction of transient emissions based on steady state mode points since the correlation between transient and steady state emissions may change substantially…
Annotation icon
 

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

SAE International Journal of Fuels and Lubricants

General Motors LLC-Paul Najt, Kushal Narayanaswamy, Arun Solomon
Pacific Northwest National Laboratory-Alla Zelenyuk
  • Journal Article
  • 2011-01-2100
Published 2011-08-30 by SAE International in United States
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number-based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.PM number distributions were acquired using a TSI Scanning Mobility Particle…
Annotation icon
 

Sources and Tradeoffs for Transient NO and UHC Emissions with Low Temperature Diesel Combustion

Univ. of Wisconsin-William Glewen, Christopher Meyer, David E. Foster, Michael Andrie, Roger Krieger
Published 2011-04-12 by SAE International in United States
High bandwidth transient data from a multi-cylinder diesel engine operating in a low temperature combustion regime was analyzed to identify and characterize the transient response behaviors primarily responsible for transient emissions of NO and UHC. Numerous different speed and load transients as well as different combustion modes and control strategies were studied to determine how these parameters affect transient performance. Limitations in the transient response of the air system were found to be the largest contributor to transient emissions, although the mechanism by which these limitations affect performance can vary greatly depending on conditions.Analysis of the data shows that transient emissions for low temperature combustion strategies are highly dependent on cycle-to-cycle changes in intake charge conditions. No fundamental difference was observed between the transient processes controlling speed and load changes. In addition, the fundamental transient response of the engine system is not a function of the combustion mode or control strategy used, although these factors do have large effects on the magnitude of emissions and other performance parameters. Cyclic build-up or depletion of oxygen caused…
Annotation icon
 

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

SAE International Journal of Engines

General Motors LLC-Russ Durrett, Venkatesh Gopalakrishnan, Alejandro Plazas, Richard Peterson, Patrick Szymkowicz
Univ. of Wisconsin-Youngchul Ra, Rolf D. Reitz, Michael Andrie
  • Journal Article
  • 2011-01-1182
Published 2011-04-12 by SAE International in United States
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections. Parametric variation of the operation ranges was also investigated with respect to initial gas temperature, boost pressure and injection pressure. Following the modeling, experiments were performed under the conditions suggested by the numerical results in order to confirm the feasibility of GDICI operation at full load, as…
Annotation icon