Search
Advanced Search
of the following are true
(
)

Results

Items (212,271)
This SAE Technical Information Report (TIR) establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability, and security. This includes the history, current status, and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., [1] If I want to do V2G with an off-board inverter, what documents and items within them do I need, [2] What do we intend for V3 of SAE J2953, …).
Hybrid - EV Committee
This specification covers an AlSi10Mg alloy produced by laser powder bed fusion (L-PBF) additive manufacturing and subjected to stress relief, hot isostatic press (HIP), solution treat, and artificial aging.
AMS AM Additive Manufacturing Metals
This standard provides a specification of a general misbehavior report format suitable for reporting misbehavior observed by a system running SAE V2X applications, and specific report contents for specific instances of misbehavior. It also provides an overview of the architecture of a system-wide misbehavior management service for the V2X system and positions the misbehavior reporting services within that architecture.
V2X Security Technical Committee
This SAE Information Report describes a concept of operations (CONOPS) for a Cooperative Driving Automation (CDA) Feature for infrastructure-based prescriptive cooperative merge. This work focuses on a Class D (Prescriptive; refer to J3216) CDA infrastructure-based cooperative merge Feature, supported by Class A (Status-Sharing) or Class C (Agreement-Seeking) messages among the merging cooperative automated driving system-operated vehicles (C-ADS-equipped vehicles). This document also provides a test procedure to evaluate this CDA Feature, which is suitable for proof-of-concept testing in both virtual and test track settings.
Cooperative Driving Automation(CDA) Committee
This report provides a concept of operations needed to evaluate a CDA Feature for a permissive left turn across opposing traffic, with infrastructure guidance. The Feature uses CDA cooperation levels including status-sharing and agreement-seeking, and a set of test scenarios (functional, logical, and concrete) is developed to evaluate this CDA Feature.
Cooperative Driving Automation(CDA) Committee
This specification covers metal products fabricated by direct metal deposition.
AMS AM Additive Manufacturing Metals
This document contains the recommended practices for the traceability of civil aircraft life-limited parts (LLPs) applicable to landing gears. A unified means of tracking flight cycles, flight hours, and calendar time is provided, which will ease the interchange of parts between companies and through the component’s life cycle. A harmonized means of defining “back-to-birth” (BtB) traceability is provided to ensure airworthiness of service LLPs.
A-5B Gears, Struts and Couplings Committee
This specification covers an alpha-beta Ti-6Al-4V alloy produced by laser powder bed fusion (L-PBF) additive manufacturing and subjected to hot isostatic press (HIP) operation. Typically, this material is used for complex-shaped aerospace products made to near net shape dimensions. These products have been used typically for parts requiring operating strength up to 750 °F (399 °C), but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
This specification establishes process controls for the repeatable implementation of the CSAM process for the manufacturing of metallic and metal-nonmetal blend components.
AMS AM Additive Manufacturing Metals
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Standard specifies a message set, and its data frames and data elements, for use by applications that use vehicle-to-everything (V2X) communications systems.
V2X Core Technical Committee
The objective of this document is to provide a classification of AI techniques that may be used in AI-based systems for aeronautical products. Aeronautical products include products in Airborne and Air Traffic Management (ATM) and Air Navigation Systems (ANS) domains for crewed and uncrewed aircraft. This document is: Intended to provide an understanding of the AI space, which will improve over time Not intended to provide guidance, objectives, or safety considerations A scenario builder for AI technologies, in particular supervised learning The publication of a taxonomy document for the aviation domain is an opportunity to support other AI standardization initiatives that will also publish taxonomy documents. Disclaimer: This document provides content to support other products of the SAE G-34/EUROCAE WG-114 Committee.
G-34 Artificial Intelligence in Aviation
This SAE Technical Information Report provides preliminary information regarding the current state of data collection, data processing methods, and usage for developing AI and its enabled systems and applications in the ground vehicle domain. This information report is a survey of topics highlighting data’s impact on AI solutions and methods that may be used to develop or improve data-related processes. This report may offer insights that can drive innovation, improve safety, optimize performance, and develop regulatory compliance methods. Solution providers may find this information insightful and realize the potential for collaborative measures in development of their AI-enabled systems. Developers of standards and lawmakers may gain a better understanding of the current state of the industry and find opportunities to develop policies to guide the future of transportation, which in turn directly impacts the public. Other committees and academic affiliates may see links between data
Artificial Intelligence
This SAE Standard describes a reference system architecture based on LTE-V2X technology defined in the set of ETSI standards based on 3GPP Release 14. It also describes cross-cutting features unique to LTE-V2X PC5 sidelink (mode 4) that can be used by current and future application standards. The audience for this document includes the developers of applications and application specifications, as well as those interested in LTE-V2X system architecture, testing, and certification.
C-V2X Technical Committee
The purpose of this standard is to provide uniform methods for defining, quantifying, and classifying the residual stress in metallic structural alloy products and finished parts. These stresses may exist within a single element, or they may be the result of a joining process. Such quantification and classification may be required when residual stresses within mill stock or preforms can impact further in-process distortion during machining or other processes, and when residual stresses within finished components can impact final mechanical properties and performance (especially strength, durability, and fracture performance).
null, null
This SAE Aerospace Information Report (AIR) provides a comprehensive overview of primary water content measurement instrumentation, for both facility-based icing research and in-flight icing research, over the range of commonly used aircraft certification icing envelopes. It includes information on the theory of operation of the instruments, system errors and limitations, and practical considerations when using them for cloud characterization. This document does not address other icing cloud measurements of interest, such as particle sizing, or measurement of phenomena such as snow, sleet, or hail.
AC-9C Aircraft Icing Technology Committee
This document defines a recommended practice for addressing metal additive manufacturing (AM) machine requalification for all fusion-based metal AM machines. In general, this applies to powder bed fusion (PBF) and wire- or powder-fed directed energy deposition (DED) technologies. Plasma, electron beam, or lasers are applicable energy source(s).
AMS AM Additive Manufacturing Metals
This User Guide describes the content of the Rhapsody version of the UCS Architectural Model and how to use this model within the Rhapsody modeling tool environment. The purpose of the Rhapsody version of the UCS Architectural Interface Control Document (ICD) model is to provide a model for Rhapsody users, derived from the Enterprise Architect (EA) model (AIR6515). The AIR6515 EA Model, and by derivation, the AIR6517 Rhapsody Model, have been validated to contain the same content as the AS6518 model for: all UCS ICD interfaces all UCS ICD messages all UCS ICD data directly or indirectly referenced by ICD messages and interfaces the Domain Participant, Information, Service and Non-Functional Properties Models
AS-4UCS Unmanned Systems Control Segment Architecture
This SAE Aerospace Information Report (AIR) addresses many of the significant issues associated with effects of inlet total-pressure distortion on turbine-engine performance and stability. It provides a review of the development of techniques used to assess engine stability margins in the presence of inlet total-pressure distortion. Specific performance and stability issues that are covered by this document include total-pressure recovery and turbulence effects and steady and dynamic inlet total-pressure distortion.
S-16 Turbine Engine Inlet Flow Distortion Committee
The purposeful integration of existing and emerging technologies into CM practice will enable collaboration with supporting systems and provide stakeholders access to authoritative and trusted data in a timely fashion at their desktop to help drive educated decision making. This lays to rest the misguided myth that CM and supporting systems operate at cross-purposes. What does it mean to have CM in a world of new initiatives and 2-week sprints (i.e., time-boxed work periods), multiple increments producing Minimum Viable Products (MVP) and synchronized with Model Based Systems Engineering (MBSE) while being digitally transformed? MBSE initiatives drive the jump from “2D” data to “3D” data, thereby becoming a Model-Centric practice. Products now enable technology to push the product lifecycle management process to new levels of efficiency and confidence. This mindset is evidenced by five major functions of CM, as discussed below, and described in EIA-649C.
G-33 Configuration Management
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program tor testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343.
Truck and Bus Aerodynamics and Fuel Economy Committee
This document specifies a set of rules for the creation and management of the V2X ASN.1 Module Collection. These rules apply to the development of any message, data element, data frame, or any ASN.1 Entity that is part of the V2X ASN.1 Module Collection, regardless of the SAE technical report in which it appears. The intended audience for these rules includes every technical committee (TC) under the SAE V2X Communications Steering Committee.
V2X Core Technical Committee
This SAE Aerospace Standard (AS) provides the method for presentation of gas turbine engine steady-state and transient performance calculated using computer programs. It also provides for the presentation of parametric gas turbine data including performance, weight, and dimensions computed by computer programs. This standard is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. This standard is applicable, but not limited to, the following program types: data reduction, steady-state, transient, preliminary design, study, specification, status, and parametric programs.
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
This SAE Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools, and publications related to active safety systems. This information report is a survey of active safety systems and related terms. The definitions offered are descriptions of functionality rather than technical specifications. Included are warning and momentary intervention systems, which do not automate any part of the dynamic driving task (DDT) on a sustained basis (SAE Level 0 as defined in SAE J3016), as well as definitions of select features that perform part of the DDT on a sustained basis (SAE Level 1 and 2).
Active Safety Systems Standards Committee
This report provides the process for developing a flexible test framework to support the creation of system-level cooperative driving automation (CDA) Feature test procedures, which are intended to be objective, repeatable, and transparent, and enable collaborative testing of the Feature. Utilizing a Feature’s functional and logical scenario details, it provides the building blocks necessary to develop cooperative automated driving system (C-ADS)-equipped vehicle (C-ADS-V) and CDA infrastructure (CDA-I) system diagrams, identify the interfaces to and from the systems, and identify the set of functional test support components specific to the CDA Feature. Utilizing these details, along with the Feature-specific concrete scenarios, a method for developing a test scope and system level use-case-focused test procedures is provided.
Cooperative Driving Automation(CDA) Committee
This SAE Recommended Practice defines key terms used in the description and analysis of video based driver eye glance behavior, as well as guidance in the analysis of that data. The information provided in this practiced is intended to provide consistency for terms, definitions, and analysis techniques. This practice is to be used in laboratory, driving simulator, and on-road evaluations of how people drive, with particular emphasis on evaluating Driver Vehicle Interfaces (DVIs; e.g., in-vehicle multimedia systems, controls and displays). In terms of how such data are reduced, this version only concerns manual video-based techniques. However, even in its current form, the practice should be useful for describing the performance of automated sensors (eye trackers) and automated reduction (computer vision).
null, null
This SAE Information Report develops a concept of operations (ConOps) to evaluate a cooperative driving automation (CDA) Feature for occluded pedestrian collision avoidance using perception status sharing. It provides a test procedure to evaluate this CDA Feature, which is suitable for proof-of-concept testing in both virtual and test track settings.
Cooperative Driving Automation(CDA) Committee
This document provides a mapping between provider service identifiers (PSIDs)—allocated to SAE by the appropriate registration authorities—and SAE technical specifications of applications identified by those PSIDs. It is intended that this document will be updated regularly, including information about the publication status of SAE technical reports.
V2X Core Technical Committee
This SAE Aerospace Recommended Practice (ARP) outlines a development, design/repair, and industrial guidance for systems using additive manufacturing (AM) to respond to aircraft requirement specifications. These recommendations reflect procedures that have been effective for designing/repairing metallic alloy components.
AMS AM Additive Manufacturing Metals
The intended upper bound of this specification is that the particle size distribution (PSD) of powders supplied shall be <60 mesh (250 μm) and that no powder (0.0 wt%) greater than 40 mesh (425 μm) is allowed.
AMS AM Additive Manufacturing Metals
Items per page:
1 – 50 of 212271