Search
Advanced Search
of the following are true

Results

Items (208,252)
The scope of this SAE Recommended Practice is limited to cranes mounted on a fixed platform lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a work boat as defined in 3.14
Cranes and Lifting Devices Committee
This SAE Aerospace Information Report (AIR) is a process verification guide for evaluating implementation of key factors in repair of fiber reinforced composite bonded parts or assemblies in a repair shop, hangar, or on-wing environment. This guide is to be used in conjunction with a regulatory approved and substantiated repair and is intended to promote consistency and reliability
AMS CACRC Commercial Aircraft Composite Repair Committee
The scope of this SAE Information Report is limited to a lift crane mounted on a fixed or floating platform, lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a workboat as defined in 3.15
Cranes and Lifting Devices Committee
This specification covers a copper-nickel-tin alloy in the form of castings, made using the investment process unless sand or centrifugal processes are agreed upon by the purchaser (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers pyrometric requirements for equipment used for the thermal processing of metallic materials. Specifically, it covers temperature sensors, instrumentation, thermal processing equipment, correction factors and instrument offsets, system accuracy tests, and temperature uniformity surveys. These are necessary to ensure that parts or raw materials are heat treated in accordance with the applicable specification(s
AMS B Finishes Processes and Fluids Committee
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7
AE-8D Wire and Cable Committee
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, in-flight entertainment equipment, etc.) meet the seat technical standard order (TSO) minimum performance standards (MPS). These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49, Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc. The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) provides recommended use and installation procedures for bonded cable harness supports
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This specification covers a magnesium alloy in the form of sand castings
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip up to 0.187 inch (4.75 mm) thick, inclusive, and plate up to 4.000 inches (101.6 mm) thick, inclusive
AMS F Corrosion and Heat Resistant Alloys Committee
The CDIF Family of Standards is primarily designed to be used as a description of a mechanism for transferring information between CASE tools. It facilitates a successful transfer when the authors of the importing and exporting tools have nothing in common except an agreement to conform to CDIF. The language that is defined for the Transfer Format also has applicability as a general language for Import/Export from repositories. The CDIF Integrated Meta-model defined for CASE also has applicability as the basis of standard definitions for use in repositories. The standards which form the complete family of CDIF Standards are documented in EIA/IS-106 CDIF - CASE Data Interchange Format - Overview. These standards cover the overall framework, the transfer format and the CDIF Integrated Meta-model. The diagram in Figure 1 depicts the various standards that comprise the CDIF Family of Standards. The shaded box depicts this Standard and its position in the CDIF Family of Standards. This
Systems Management Council
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This Handbook is intended to provide useful information on the application of AS5716A. It is for use by System Program Offices, aircraft prime contractors, avionics and store system designers, system integrators and equipment manufacturers and users. This Handbook was prepared to provide users of the standard of the rationale and principles considered during the development of the standard. It is anticipated that the handbook will serve to assist developers in introducing new technology to achieve compliance with the standard and the underlying principles of the standard. It is intended that the Handbook be used alongside the standard, as it does not contain significant extracts of the standard
AS-1B Aircraft Store Integration Committee
This SAE Aerospace Recommended Practice (ARP) specifies guidelines for calculating and performing shoring (load spreading) required on board civil transport aircraft whenever a piece of cargo to be carried exceeds the aircraft's maximum allowable limits in area load, running load, or both. It provides both the engineering methods needed to properly design a shoring arrangement, and the main practical dos and donts known from experience to ensure its effectiveness in protecting the aircraft's structure against overload
AGE-2 Air Cargo
The scope of this document is limited to encompass terminology, symbols, performance criteria and methods reflecting the current status of the technology
A-6A3 Flight Control and Vehicle Management Systems Cmt
This specification covers the detail requirements for control transformer synchro, type 16CTB4b, 90 volt, 400 cycle
AE-7A Generators and Controls Motors and Magnetic Devices
This SAE Aerospace Recommended Practice (ARP) describes three general types of Ground Support Equipment (GSE) battery chargers. The battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger.” A charger, hereafter called “Opportunity Charger,” which has the ability to charge at a slightly faster rate than a conventional charger. A charger, hereafter called “Fast Charger,” which has the ability to charge at a much faster rate than a conventional charger. Recommendations that apply to all types will refer generically to “charger
AGE-3 Aircraft Ground Support Equipment Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor
AS-1A Avionic Networks Committee
The methodology for maximum package size loading is based on a mathematical method allowing the calculation of maximum package size tables. This method does not in principal differentiate between bulk loading and cargo system loading. However, some restrictions have to be considered: Some cargo systems generate pre-determined pallet trajectories. Envelope curves depending on the pallet size and the possible trajectories have to be determined first. Door geometric limitations (with or without cargo loading system) Turning limitations due to weight, load geometry and conveyance capability Securing requirements This document is not intended for airline operational use. It should be used by engineers performing calculations or developing computer programs to produce Maximum Package Size tables specified in AS1825
AGE-2 Air Cargo
This AIR lists and describes a collection of regulations, policy, and guidance documents applicable to design approval applicants, aircraft operating certificate holders, and maintenance repair and overhaul (MRO) organizations. The aircraft industry should consider these rules when installing IVHM technology for use in aircraft maintenance. This is a starting basis and should not be considered as complete when certification of an IVHM system is expected. The AIR’s objectives are: 1 To set the foundation for aircraft certification applicants seeking to design IVHM solutions as part of the type certificate (TC), supplemental type certificate (STC), amended TC, or amended STC activities; and 2 To set the foundation for aircraft operating certificate holders to engage with regulators to get authorization for using IVHM applications as part of an aircraft maintenance program. NOTE: This AIR’s scope is limited to the United States (U.S.) Federal Aviation Administration (FAA) information only
HM-1 Integrated Vehicle Health Management Committee
AE-7A Generators and Controls Motors and Magnetic Devices
AGE-4 Packaging, Handling and Transportability Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This Common Interface Control Plan (CICP) establishes the methodology for developing, controlling, and managing the technical interfaces between and within systems. An interface defines the interaction at a defined point between entities to achieve a combined system capability. A common interface defines the shared interaction between multiple systems on either side of the interface. The document is not intended to directly control any other aspects of program management, such as matters of contractual, financial, or those of an intellectual property rights nature. Members in the interface control process include: procurement authorities, design authorities, and other related agencies as defined in the specific System Interface Control Plan (SICP). For the purposes of this plan, only the terms Procuring Organization and Producing Organization will be used. This plan is predicated upon formal agreements between participating organizations that provide: 1 Authority to participate in
AS-1B Aircraft Store Integration Committee
This document defines the requirements for heavy-duty polytetrafluoroethylene (PTFE) lined, para-aramid reinforced, hose assembly suitable for use in 275 °F, 3,000 psi aircraft systems where rapid rate pulsing and torsional/longitudinal flexing may occur in addition to normal hydraulic system loading. Size -16 and -20 are limited to +225 °F service
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Blade trackers measure: (a) rotor blade height and (b) lead-lag for use in a Rotor Track and Balance (RT&B) function in a Health and Usage Monitoring System (HUMS). HUMS is a generic term for a system used to measure, monitor, process, and store information relating to the functioning and usage of an aircraft's on-board primary systems, including the engine(s
HM-1 Integrated Vehicle Health Management Committee
The emphasis in this standard is the development of data word and message formats for AS15531 or MIL-STD-1553 data bus applications. This standard is intended as a guide for the designer to identify standard data words and messages for use in avionics systems and subsystems. These standard words and messages, as well as the documentation format for interface control document (ICD) sheets, provide the basis for defining 15531/1553 systems. Also provided in this standard is the method for developing additional data word formats and messages that may be required by a particular system but are not covered by the formats provided herein. It is essential that any new word formats or message formats that are developed for a 15531/1553 application follow the fundamental guidelines established in this standard in order to ease future standardization of these words and messages. The standard word formats presented represent a composite result of studies conducted by the U.S. Army, Navy, and Air
AS-1A Avionic Networks Committee
This AS provides suitable test methods for measuring the dynamic coefficient of friction ("slip resistance" or "sliding friction") of aircraft flooring and walkway surfaces in accordance with 14 CFR and EASA CS 25.793 and 25.810(c). § 25.793 specifies the areas which are likely to become wet in service must have slip-resistant properties, and § 25.810 specifies an escape route must be established from each overwing emergency exit that is covered with a slip-resistant surface
null, null
The tow vehicle should be designed for towbarless movement of aircraft on the ground. The design will ensure that the unit will safely secure the aircraft nose landing gear within the coupling system for any operational mode
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
This ARP specifies the recommended methods of handling silver coated conductors and shield, by the conductor fabricator, wireinsulator, distributors, harness or assembly houses, and OEM’s. Red Plague mitigation depends upon each link in the chain of supply handling the wire and cable properly
AE-8D Wire and Cable Committee
Items per page:
1 – 50 of 208252