Search
Advanced Search
of the following are true
(
)

Results

Items (212,269)
The purpose of this SAE Information Report is to specify the requirements necessary to fully define the Serial Data Communication Interface (SCI) used in the reprogramming of emission-related powertrain Electronic Control Units (ECU) in Fiat Chrysler Automobiles (FCA) vehicles. It is intended to satisfy new regulations proposed by the federal U.S. Environmental Protection Agency (EPA) and California Air Resource Board (CARB) regulatory agencies regarding “pass-thru programming” of all On-Board Diagnostic (OBD) compliant emission-related powertrain devices. These requirements are necessary to provide independent automotive service organizations and after-market scan tool suppliers the ability to reprogram emission-related powertrain ECUs for all manufacturers of automotive vehicles. Specifically, this document details the SCI physical layer and SCI data link layer requirements necessary to establish communications between a diagnostic tester and an ECU. It further specifies additional
Vehicle E E System Diagnostic Standards Committee
The purpose of this Standard is to support the development and improvement of systems engineering capability.
G-47 Systems Engineering
This document outlines general requirements for the use of CFD methods for aerodynamic simulation of medium and heavy commercial ground vehicles weighing more than 10000 pounds. The document provides guidance for aerodynamic simulation with CFD methods to support current vehicle characterization, vehicle development, vehicle concept development, and vehicle component development. The guidelines presented in the document are related to Navier-Stokes and Lattice-Boltzmann based solvers. This document is only valid for the classes of CFD methods and applications mentioned. Other classes of methods and applications may or may not be appropriate to simulate the aerodynamics of medium and heavy commercial ground vehicle weighing more than 10000 pounds.
Truck and Bus Aerodynamics and Fuel Economy Committee
This document describes machine-to-machine (M2M) communication to enable cooperation between two or more participating entities or communication devices possessed or controlled by those entities. The cooperation supports or enables performance of the dynamic driving task (DDT) for a subject vehicle with driving automation feature(s) engaged. Other participants may include other vehicles with driving automation feature(s) engaged, shared road users (e.g., drivers of manually operated vehicles or pedestrians or cyclists carrying personal devices), or road operators (e.g., those who maintain or operate traffic signals or workzones). Cooperative driving automation (CDA) aims to improve the safety and flow of traffic and/or facilitate road operations by supporting the movement of multiple vehicles in proximity to one another. This is accomplished, for example, by sharing information that can be used to influence (directly or indirectly) DDT performance by one or more nearby road users
Cooperative Driving Automation(CDA) Committee
The scope of this document is to provide an overview of the techniques found in the published literature for rollover testing and rollover crashworthiness evaluation at the vehicle and component levels. It is not a comprehensive literature review, but rather illustrates the techniques that are in use or have been used to evaluate rollover crashworthiness-related issues.
Impact and Rollover Test Procedures Standards Committee
This SAE Recommended Practice applies to retroreflective sheeting materials that are used on truck tractors and trailers 2032 mm or more in overall width and with a gross vehicle weight rating (GVWR) over 4536 kg and school buses to improve vehicle conspicuity. The retroreflective sheeting materials for the truck tractors and trailers are super-high-intensity materials containing microprisms. The retroreflective sheeting materials for school buses may contain flexible non-exposed glass bead lenses or microprisms.
Heavy Duty Lighting Standards Committee
This SAE Recommended Practice specifies an intrusion resistance test method for glazing systems installed in motor vehicles. Intrusion resistance performance is determined not solely by the glazing but also by the glazing attachment to the vehicle and by the vehicle structure. Therefore, the glazing/attachment/vehicle structure must be tested as a single unit. This test determines intrusion resistance only. The test applies to those materials that meet the requirements for use as safety glazing materials as specified in ANSI/SAE Z26.1 or other applicable standards. The test applies to all installation locations.
Glazing Materials Standards Committee
This document will provide methodologies and procedures to validate active safety test targets and correlate them to the objects they are intended to represent. This process will be separated into three procedures. The correlation procedure will document a means of measuring representative object characteristics and how to calculate a correlation score for a test target using that objective characteristic measurement. The validation procedure will be utilized to determine the correlation score for the test target. A confirmation procedure will identify unacceptable characteristic deviations of the targets during use in the field. Test targets may include cars, pedestrians, motorcycles, bicycles, or any other object that may be encountered by a vehicle. This document relates only to the radar characteristics of these test targets.
Active Safety Systems Standards Committee
This document applies to hardware and software and provides CM requirements to be placed on contracts after being tailored by the Acquirer. The requirements have been organized by the following five CM functions: a Configuration Planning and Management b Configuration Identification c Configuration Change Management d Configuration Status Accounting e Configuration Verification and Audit
G-33 Configuration Management
SAE J2601 establishes the protocol and process limits for hydrogen fueling of vehicles with total volume capacities greater than or equal to 49.7 L. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase, and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature, and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula-based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously. For fueling with communications, this standard is to be used in
Fuel Cell Standards Committee
This document describes a rigorous-engineering fuel-consumption test procedure that utilizes industry accepted data collection and statistical analysis methods to determine the change in fuel consumption for individual trucks and buses with GVWR of more than 10000 pounds. The test procedure may be conducted on a test track or on a public road under controlled conditions and supported by extensive data collection and data analysis constraints. The on-road test procedure is offered as a lower cost alternative to on-track testing, but the user is cautioned that on-road test may result in lower resolution (or precision) data due to a lack of control over the test environment. Test results that do not rigorously follow the method described herein are not intended for public use and dissemination and shall not be represented as an SAE J1321-Type II test result.
Truck and Bus Aerodynamics and Fuel Economy Committee
This SAE standard outlines the steps and known accepted methodologies and standards for linking Model V&V with model-based product reliability assessments. The standard’s main emphasis is that quantified values for model-based product reliability must be accompanied by a quantified confidence value if the users of the model wish to claim use of a “Verified and Validated” model, and if they wish to further link into business and investment decisions that are informed by quantitative second-order risk and benefit cost considerations.
G-41 Reliability
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive. Other use cases that require hardware protected security environment-based access control may be used by each manufacturer
Vehicle Electrical System Security Committee
This SAE Recommended Practice provides test procedures, requirements, and guidelines for side turn signal lamps intended for use on vehicles 12 m or more in overall length, except pole trailers. Side turn signal lamps conforming to the requirements of this document may be used on other large vehicles such as trucks, truck tractors, buses, and other applications where this type of lighting device is desirable. It is not intended for use on shorter vehicles due to the higher intensity requirements of SAE J2039 compared to the SAE J914 devices.
Heavy Duty Lighting Standards Committee
SAE J2998 defines the recommended information content to be included for documenting dynamical models used for simulation of ground vehicle systems. It describes the information that should be compiled to describe a model for the following user applications or use cases: (1) exchange, promotion, and selection; (2) creation requests; (3) development process management; (4) compatibility evaluation; (5) testing-in-the-loop simulations with hardware and/or software; (6) simulation applications; and (7) development and maintenance. For each use case, a model description documentation (MDD) template is provided in the appendices to facilitate model documentation. In addition, an example of a completed model documentation template is provided in the appendices.
Dynamical Modeling and Simulation Committee
This SAE Recommended Practice is intended to describe the application of single-phase DC to AC inverters, and bidirectional inverter/chargers, which supply power to ac loads in Class heavy duty on-highway trucks (10K GVW). The document identifies appropriate operating performance requirements and adds some insight into inverter selection. This document applies to factory and after-market installed DC-to-AC inverter systems (Including inverter chargers) providing up 3000 W of 120 VAC line-voltage power as a convenience for operator and passenger use. Such inverters are intended to power user loads not essential to vehicle Operation or safety (e.g., HVAC, TV, microwave ovens, battery chargers for mobile phones or laptop computers, audio equipment, etc.). Systems incorporate the inverter itself as well as the input, output, control, and signal wiring associated with the inverter. Requirements are given for the performance, safety, reliability, and environmental compatibility of the system
Truck and Bus Electrical Systems Committee
This document is written to address acceleration and deceleration control issues related to heavy-duty trucks and buses greater than 10000 GVW.
Truck and Bus Brake Systems Committee
This specification covers two types of refined hydrocarbon compounds in the form of liquids. This specification only covers newly manufactured materials.
AMS K Non Destructive Methods and Processes Committee
This specification covers an aluminum alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
This document applies to prognostics of aerospace propulsion systems. Its purpose is to define the meaning of prognostics in this context, explain their potential and limitations, and to provide guidelines for potential approaches for use in existing condition monitoring environments. This document also includes some examples. The current revision does not provide specific guidance on validation and verification, nor does it address implementation aspects such as computational capability or certification.
E-32 Aerospace Propulsion Systems Health Management
The processes addressed in this Aerospace Information Report (AIR) apply to the acquisition and validation of dynamic total-pressure and distortion data from CFD models simulating turbulent flows in inlets. The results of these processes can be used in the formation of an inlet-flow-distortion methodology that addresses turbine-engine operability assessments.
S-16 Turbine Engine Inlet Flow Distortion Committee
This SAE Recommended Practice establishes testing methods and performance requirements for windshield wiping systems on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4500 kg (10000 pounds) or greater and light duty utility vehicles with a GVWR of less than 4500 kg (10000 pounds). The test procedures and minimum performance requirements, outlined in this document, are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
Truck and Bus Windshield Wipers and Climate Control Comm
This SAE Aerospace Information Report (AIR) offers an overview of the aspects of intellectual property (IP) protection, legislative compliance, business model, and technologies which need to be considered and addressed to implement a data interoperability, secure business model and technology platform to enable prognostics and health management (PHM) in the digital age. While this information report is restricted to the aerospace domain and also to commercial aviation, the concepts are applicable to any other domain that employs data for supporting health management functionality.
G-31 Digital Transactions for Aerospace
This document is not a standard, it is a candidate for a standard being submitted to SAE for their consideration as a comment to SAE J2735. The term SAE J2735 SE candidate is used within this document to refer to this submission. This document specifies dialogs, messages, and the data frames and data elements that make up the messages specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC"), communications systems. Although the scope of this Standard is focused on DSRC, these dialogs, messages, data frames and data elements have been designed, to the extent possible, to be of use for applications that may be deployed in conjunction with other wireless communications technologies. This standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the
V2X Communications Steering Committee
This document provides dimensional definitions that facilitate geometric quantification and evaluation of seats. Linear, radial, and angular surface dimensions included in this document are intended to approximate shape characteristics based on defined points of interest and not as a method needed to reproduce complex surface contours. In many cases, other points across the seat surface shape may exceed or not reach the boundary defined by these simple geometric definitions. Dimensions described in this document have been designed to be measured in a CAD environment; however, many dimensions require the HPD position and attitude. This can be obtained by physically establishing H-point using benchmark or auditing procedures OR by measuring the HPD within a CAD or modelling system. Refer to the appropriate document for these procedures. Three types of seat geometry reference points and measurements have been developed: 1 Simple reference points and measurements not related to H-point. 2
Human Accom and Design Devices Stds Comm
This SAE recommended practice applies to 12 V lead-acid storage batteries that are designed specifically for start-stop operations in on-road passenger vehicles or light trucks. Included are definitions of terms, general testing requirements, key performance characteristics, and life testing. Properties not unique to start-stop batteries should be tested according to SAE J537 or other applicable testing protocols.
Start-Stop Battery Committee
SAE J2534-1 defines a standard vehicle network interface that can be used to reprogram emission-related control modules. However, there is a need to support vehicles prior to the 2004 model year, as well as non-emission related control modules. The SAE J2534-2 document meets these needs by detailing extensions to API version 04.04 of the SAE J2534-1 specification. It is not required for an interface to be fully compliant with API version 04.04 of the SAE J2534-1 specification to implement some of the features specified in this document. Together, these extensions provide the framework for a common interface to protect the software investment of the vehicle OEMs and scan tool manufacturers. Only the optional features will be described by this document and are based on the December 2004 publication of SAE J2534-1.
Vehicle E E System Diagnostic Standards Committee
This specification establishes the requirements for the production of reliable, repeatable, reproducible aerospace parts by fused filament fabrication but is not limited to such application. This specification establishes the requirements to approve new machines, processes, and materials. Specifically, this specification covers machine configuration, operating software, machine calibration, machine and build parameters, and testing methodology required to create aerospace parts. This specification also defines the user’s responsibility for following the specified requirements.
AMS AM Additive Manufacturing Non-Metallic
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines, and particularly for those who might be interested in investigating steady-state performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of numerical modeling and simulation. It is not the intent of this standard to provide specific test cell design recommendations, which are covered in the reference documentation.
EG-1E Gas Turbine Test Facilities and Equipment
This specification covers a heat-resistant titanium alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
This AIR is applicable to components fabricated using additive manufacturing (AM) processes. The discussion is generic with respect to specific additive processes as much as possible. Each additive process has unique considerations that should be addressed in any effort to substantiate additively manufactured components, This specification is written for metallics but conceptually could be applied to non-metallics.
AMS AM Additive Manufacturing
This specification covers the grain flow pattern requirements in headed bolts, screws, and studs. The heading practice in the manufacture of the bolt, screw, or stud sets the grain flow pattern, but it is also greatly influenced by the fastener and tooling design as well as cold-forging setup. The use of tooling design simulation software is recommended and a commonly used practice that provides reliable forging predictions for superior grain flow quality.
USCAR
This SAE Aerospace Recommended Practice (ARP) provides technical recommendations for the lighting applications for Unmanned Aircraft Systems (UAS). The technical content of this ARP discusses the unique trade-offs that are necessary to maintain commonality to the U.S. Federal Aviation Regulations (FARs)1 for aerospace lighting. The recommendations set forth in this document are to aid in the design of Unmanned Aircraft (UA) lighting for the size of aircraft and operation for which the aircraft is intended. In addition, certain concepts of operation for which UASs are suited will require unique lighting solutions.
A-20B Exterior Lighting Committee
SAE GEIA-STD-0007C defines logistics product data generated during the requirement definition and design of an industry or government system, end item, or product. It makes use of the Extensible Markup Language (XML) through the use of entities and attributes that comprise logistics product data and their definitions. The standard is designed to provide users with a uniform set of data tags for all or portions of logistics product data. The standard can be applied to any industry or government product, system or equipment acquisition program, major modification program, and applicable research and development projects. This standard is for use by both industry and government activities. As used in this standard, the requiring authority is generally the customer and the customer can be a government or industry activity. The performing activity may be either a industry or government activity. The use of the term “contract” in this standard includes any document of agreement between
LCLS Life Cycle Logistics Supportability
This standard defines five CM functions and their underlying principles. The functions are detailed in Section 5. The principles, highlighted in text boxes, are designed to individually identify the essence of the related CM function and can be used to collectively create a checklist of “best practice” criteria to evaluate a CM program. The CM principles defined in this standard apply equally to internally focused enterprise information, processes, and supporting systems (i.e., Enterprise CM - policy driven, supporting the internal goals needed to achieve an efficient, effective and lean enterprise), as well as to the working relationships supported by the enterprise (i.e., Acquirer/Supplier CM - contracted relationship to support external trusted interaction with suppliers). In an Enterprise CM context there are several methodologies for principle use by the enterprise: The principles of this standard provide direction for developing enterprise or functional CM plans focused on
G-33 Configuration Management
This standard defines the common nonconformity data definition and documentation that shall be exchanged between an internal/external supplier or sub-tier supplier, and the customer when informing about a nonconformity requiring formal decision. The requirements are applicable, partly or totally, when reporting a product nonconformity to the owner or operator, as user of the end item (e.g., engine, aircraft, spacecraft, helicopter), if specified by contract. Reporting of nonconformity data, either electronically or conventionally on paper, is subject to the terms and conditions of the contract. This also includes, where applicable, data access under export control regulations.
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This specification covers a corrosion and heat-resistant nickel alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
Items per page:
1 – 50 of 212269