Results
This SAE Recommended Practice establishes recommended procedures for the issuance, assignment, and structure of Identification Numbers on a uniform basis by states or provinces for use in an Assigned Identification Number (AIN).
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
This SAE Standard covers the general and dimensional data for industrial quality ball joints commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications.
This SAE Recommended Practice defines flywheel housing flange configurations for applications requiring "O" ring sealing of the flange pilot bore. Table 1 and Figure 1 show dimensions that are different from those in SAE J617. All other dimensions and tolerances of SAE J617 apply.
This SAE Recommended Practice documents the typical transmission interface dimensions that are used with 14-in and larger pull-type clutches. See Figure 1.
This SAE Standard describes the terms or names of the parts, characteristics, and parameters of automotive pull-type clutches used in trucks, and of vehicle apparatus or components related to the pull-type clutch.
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow (#1 ) and a similar test procedure specified without vibration or coolant flow (#2). Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
This SAE Recommended Practice applies to spring-loaded clutches such as are used with manual shift type transmissions.
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
This SAE Standard defines installation dimensions of industrial power take-offs with driving ring-type overcenter clutches. Table 1 and Figure 1 give dimensions for power take-offs. For dimensions and tolerances of power take-off flanges and flywheels, see SAE J617 and J620, respectively.
This SAE Recommended Practice has been established for the purpose of providing design criteria and suggested dimensional proportions which may be used for ball studs and ball stud socket assemblies as used on steering systems or control mechanisms of passenger vehicles, trucks and off-road equipment. The recommended practice does not cover all applications. It is intended to provide assistance in obtaining functional satisfaction and interchangeability. The inclusion of dimensional data in this report is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning stock production parts.
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
This SAE Parts Standard provides dimensional and quality assurance requirements for studs in the following configurations in standard materials used for ship system applications: a Continuous thread studs in UNRC and 8UNR series in the following threads and diameters: UNRC threads (1/4 through 4 inches) UNRF threads (1/4 through 1-1/2 inches) 8UNR threads (1-1/8 through 4 inches) b Double end studs (clamping type) where both ends are of the same minimum thread length in the following threads and diameters: UNRC threads (1/4 through 4 inches) UNRF threads (1/4 through 1-1/2 inches) 8UNR threads (1-1/8 through 4 inches) Different thread forms on each end are permissible. c Double end studs (tap end type) where the tap end thread length is equivalent to 1-1/2 nominal diameters: Tap End Thread Forms and Diameters Nut End Thread Forms and Diameters NC-5 interference-fit tap end threads (1/4 through 1-1/2 inches) UNRC threads (1/4 through 4 inches) UNRC threads (1/4 through 4 inches) UNRF
These remanufacturing procedures are recommended minimum guidelines (with the understanding that more stringent procedures are acceptable) for use by remanufacturers of heavy-duty starters to promote consistent reliability, durability, and safety of remanufactured starters. Installation of remanufactured or rebuilt products is often an economical way to repair an application even though the products may not be identical to original equipment parts. Before processing any part, a remanufacturer should determine if the original design and present condition of the core are suitable for remanufacturing so as to provide durable operation of the part as well as acceptable performance when installed on the application. The remanufacturer should also consider the safety aspects of the product and any recommendations of the original manufacturers related to remanufacturing or rebuilding their product.
For cutting edges used on buckets for loaders defined in SAE J1057a. The dimensions are applicable to rolled, cast, forged, flame cut, and machined cutting edge sections. Straight cutting edges are defined as those whose leading edge and rear edge are parallel and, thus, are of constant cross section. For "straight cutting edge sections with bolt holes," see SAE J1304 FEB85. NOTE—For some heavy duty applications, cross sections with larger blunts and greater bevel angles may be required.
This SAE Standard sets forth the requirements for the attachment of three-point hitch implements or equipment to the rear of agricultural wheeled tractors equipped with quick-attaching couplers.
This SAE Information Report applies to all independent or combination construction and industrial machines that are designed to scraper-load and transport material. (See SAE J1116 and J1057a.)
The purpose of this SAE Recommended Practice is to provide criteria for determining the compatibility of air-conditioning (A/C) system materials/components with candidate retrofit refrigerants intended to replace CFC-12 (R12) in mobile A/C systems originally designed to use CFC-12 (R-12).
Refrigerant containment is an important part of servicing mobile air-conditioning (A/C) systems. This procedure provides guidelines for technicians for servicing mobile A/C systems and operating refrigerant recycling equipment designed for HFC-134a (R-134a) (described in SAE J2210).
This SAE Standard applies to the application of ultraviolet leak detection to service mobile air-conditioning systems.
This SAE Recommended Practice provides a test procedure for eddy current speedometers, including the odometer if an integral portion of the speedometer, for passenger car service.
This SAE Recommended Practice describes a method to collect, identify, and quantify effluent resulting from deployment of in-vehicle stored energy restraint systems. Deployment and collection is completed in a 2.83 m3 (100 ft3 ) chamber. This procedure is written as a guideline for the identification and quantification of both particulate effluent (size, concentration, and composition) and gaseous effluent (concentration and composition). The intent of this procedure is to describe and recommend testing methods and not to establish limits for the effluent. This procedure should be used in conjunction with performance specifications from the customer and/or manufacturer of the device(s) being tested. This is a general procedure for repetitive and comparative testing, and suggests only general guidelines for the safe conduct of tests and reliable data correlation.
The purpose of this SAE Recommended Practice is to establish the specific criteria for the selection of a replacement refrigerant for mobile CFC-12 (R-12) air-conditioning (A/C) systems. This document provides guidelines for qualifying candidate refrigerant. The requirements include laboratory and field testing. The alternate refrigerant shall provide comparable system performance as CFC-12 (R-12) as defined herein. The vehicle testing shall be conducted on representative vehicle manufacturer’s product line, in which the refrigerant is intended to be used, such as cycling clutch orifice tube, constant run orifice tube, cycling clutch expansion valve, or continuous run expansion valve refrigerant system. This document is complete only when combined with the requirements of SAE J1657.
This SAE Standard establishes a test method to measure drag force of self-propelled, as well as towed, construction, forestry, and industrial machines, with or without payload, as listed in SAE J/ISO 6165 and J1116. Drag force is measured as a function of travel speed.
For cutting edges used on buckets for loaders defined in SAE J1057a. The dimensions are applicable to rolled and machined sections only. Cutting edge cross section thickness is limited to a maximum of 35 mm. Bolt-on tooth adapters are rarely used on loader buckets with cutting edge thicknesses in excess of 35 mm. This recommended practice applies only to straight cutting edges defined as those whose leading edge and rear edge are parallel and thus are of constant cross section. Overall cross sections to which bolt holes were added as indicated by this recommended practice were selected from those indicated per "Cutting Edge—Cross Sections Loader Straight," SAE J1303 FEB85. Selection was based on minimum section width requirements to accommodate bolt-on tooth adapters. NOTE—For some heavy-duty applications, cross sections with larger blunts, greater bevel angles, and larger bolt holes may be required.
This SAE Information Report is intended to provide the hydraulic oil manufacturer and hydraulic equipment manufacturer with information that can be used predicting the relative impact that non petroleum based hydraulic oils may have on the hose elastomers in the existing system. This document contains the information necessary to perform the tests using standard elastomer formulations, representative of material used in hydraulic hose. The test methods used are defined within ASTM D471, standard test method for Rubber Property—Effect of Liquids. The physical properties measured, are volume swell, tensile strength, percent elongation, shore A hardness and load at 100% elongation. The properties were measured, after immersion, at 72 hours, 168 hours, 336 hours, 504 hours, 672 hours, 840 hours, and 1008 hours and the percent calculated as change from the unaged properties. The detail of the testing process is described in the following report.
This SAE Recommended Practice describes a unified numbering system (UNS) for metals and alloys which have a "commercial standing" (see 6.1), and covers the procedure by which such numbers are assigned. Section 2 describes the system of alphanumeric designations or "numbers" established for each family of metals and alloys. Section 3 outlines the organization established for administering the system. Section 4 describes the procedure for requesting number assignment to metals and alloys for which UNS numbers have not previously been assigned.
This interface document SAE J2286 revises the requirements for file formats as were originally described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2461. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939, ISO 15765 or ISO 14229. The requirements of SAE J2286 supersede the requirements defined by SAE J1924.
The fuses shown are for use in motor vehicles, boats, and trailers to protect electrical wiring and equipment. This standard is for the construction shown and is not intended to restrict the design and use of other configurations and materials capable of meeting the vehicle requirements.
This SAE Recommended Practice provides a standard procedure for testing the output performance and plotting the performance curve of electric starting motors, and a graphical method of determining engine cranking speed.
This SAE Recommended Practice is intended to apply to lamps, batteries, heaters, radios, and similar equipment for operation with mobile or automotive diesel engines. Twenty-four V systems have long been used for heavy-duty services because 24 V permit operating 12 V systems in series-parallel. Thirty-two V systems have been used for marine, railroad-car lighting, and other uses. Generators, storage batteries, starting motors, lighting, and auxiliary electrical equipment shall be for nominal system ratings of 12, 24, or 32 V as determined by the power requirements of the application. It is recommended that no intermediate voltages be considered. The combination of a 24 V starting motor and two 12 V batteries connected in series for cranking is considered practical where it can be adapted to the installation. The batteries are reconnected in parallel for charging from a 12 V generator/alternator and for operating lights and other auxiliary equipment, or charged separately and used
The electrical cranking system components, which include the battery, cables, and cranking motor, must be carefully selected to provide the necessary speed to start an engine under the most severe climatic conditions for which the system is intended. Engine cranking loads increase with cold temperatures, therefore, the initial selection of these components needs to consider low-temperature engine torque requirements. To insure an adequate electrical cranking system is obtained, it is important that proper test procedures are used for obtaining the cranking load requirements of the engine.
This document defines the test conditions, procedures, and performance specifications for 6-, 12-, and 24-V manually actuated headlamp switches (circuit breaker(s) may be incorporated for circuit overload protection).
This report is intended to provide the information to estimate the accessory load of a typical heavy truck or bus. The components covered include: air compressors, alternators, refrigerant compressors, engine cooling fans and power steering pumps. The values show an estimate of the average power requirements and duty cycles for these accessories. This report does not address loads required for engine operation. Required systems include those needed for engine performance such as fuel pumps and electronic control modules (ECM).
The terms included in this SAE Information Report have been collected during the development of SAE documents related to standards for the adaptation of vehicles for use by persons with physical disabilities. It includes only those terms that are pertinent to the adaptive devices discipline, leaving to other authorities more common automotive engineering terms. Where several terms have a common meaning in the practice, the Terminology Task Force has attempted to select the most appropriate term. The Terminology Task Force recognizes that there will be a need to expand and update current terminology as advances in the industry occur, and as related standards documents are completed. Accordingly, they will continue to develop and maintain this document to reflect those changes.
The purpose of this SAE Standard is to provide a standardized test procedure for generating engine performance maps. An engine performance map is a listing of engine fuel flow rates versus torque or power obtained at specific engine speeds and loads. Engine performance maps as specified by this code can be used in fuel economy simulation programs. This document is applicable to both four-stroke spark ignition (SI) and compression ignition (CI) engines, naturally aspirated and pressure charged, with or without charge air cooling.
This document defines various vehicular noises and vibrations that are attributed to being created by the foundation brake components of the vehicle, particularly on passenger cars and light trucks. These definitions cover both disc and drum brakes. The frequency ranges from near zero Hz (tactile sensations) all the way up to 17 kHz, or the upper limit of normal hearing. These noises and vibrations may either directly radiate off the brake system or provide the excitation energy that causes other vehicle components to react.
Items per page:
50
1 – 50 of 212795