Search
Advanced Search
of the following are true

Results

Items (207,323)
This document provides background information, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and similarity criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP6330 defines multiple test methods used to assess the effect of seat back mounted IFE monitor changes on blunt trauma to the head and post-impact sharp edge generation. The data generated is based on seat and IFE components installed on type A-T (transport airplane) certified aircraft. While not within the scope of ARP6330, generated test data for the possible future development of surrogate target evaluation methods is also included
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) provides recommendations for: The audit process in general A list of specific areas of attention to be audited Maintaining the test facility in such a manner that it meets audit requirements
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Aerospace Standard (AS) defines qualification requirements, and minimum documentation requirements for forward and aft facing seats in Advanced Air Mobility aircraft. The goal is to achieve occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when the seat is subjected to statically applied ultimate loads and to dynamic test conditions. While this document addresses system performance, responsibility for the seating system is divided between the seat manufacturer and the installation applicant. The seat manufacturer’s responsibility consists of meeting all the seat system performance requirements. The installation applicant has the ultimate system responsibility in assuring that all requirements for safe seat installation have been met. This AS is dependent on AS8049D and cannot be used without it. This AS provides revisions to the corresponding sections of AS8049D to incorporate new material specific
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) defines means to assess the effect of changes to seat back mounted IFE monitors on blunt trauma to the head and post-impact sharp edges. The assessment methods described may be used for evaluation of changes to seat back monitor delethalization (blunt trauma and post-test sharp edges) and head injury criterion (HIC) attributes (refer to ARP6448 Appendix A Items 3 and 6, respectively). Application is focused on type A-T (transport airplane) certified seat installations
null, null
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein. Some of the requirements that could be superseded include camera placement, optical data channel evaluation, camera to subject measurements, and scaling
Aircraft Seat Committee
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions
Aircraft Seat Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry
Engine Power Test Code Committee
This specification covers tungsten in the form of forgings produced from billets processed by isostatically cold pressing, utilizing hydrogen reduced tungsten powder, and high-temperature sintering
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, forgings of thickness up through 4.000 inches (101.60 mm), inclusive, and stock for forging of any size (see 8.6
AMS G Titanium and Refractory Metals Committee
This specification covers tantalum in the form of sheet, strip, plate, and foil up through 0.1875 inch (4.75 mm), inclusive
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of forgings, 6.000 inches (152.40 mm) and under in cross-sectional thickness and forging stock of any size
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars up through 6.000 inches (152.40 mm) inclusive, in nominal diameter or least distance between parallel sides, forgings of thickness up through 6.000 inches (152.40 mm), inclusive and stock for forging of any size
AMS G Titanium and Refractory Metals Committee
This specification covers aircraft quality, commercially pure titanium and alpha, alpha-beta and beta titanium alloy rolled or forged bar and reforging stock products
AMS G Titanium and Refractory Metals Committee
This list of terms, with accompanying photomicrographs where appropriate, is intended as a guide for use in the preparation of material specifications
AMS G Titanium and Refractory Metals Committee
This specification covers tungsten in the form of pressed, sintered, and wrought sheet, strip, plate, and foil
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of sheet and strip up to 0.143 inches (3.63 mm), inclusive, in nominal thickness
AMS G Titanium and Refractory Metals Committee
This specification defines limits of variation for determining acceptability of the composition of cast or wrought titanium and titanium alloy parts and material acquired from a producer
AMS G Titanium and Refractory Metals Committee
This specification covers aluminum-beryllium powders consolidated by hot isostatic pressing (HIP) into the form of blocks, blanks or shapes
AMS G Titanium and Refractory Metals Committee
This specification covers one grade of commercially-pure titanium in the form of sheet, strip, and plate up through 1.000 inch (25.40 mm), inclusive
AMS G Titanium and Refractory Metals Committee
This specification covers anethylene propylene (EPM) rubber in the form of molded rings
AMS CE Elastomers Committee
This document outlines the evaluation and documentation appropriate when the components of an approved aircraft seat restraint system are replaced or modified by a party other than the Original Equipment Manufacturer of the restraint system
Aircraft Seat Committee
This document is a guide to the application of magnesium alloys to aircraft interior components including but not limited to aircraft seats. It provides background information on magnesium, its alloys and readily available forms such as extrusions and plate. It also contains guidelines for “enabling technologies” for the application of magnesium to engineering solutions including: machining, joining, forming, cutting, surface treatment, flammability issues, and designing from aluminum to magnesium
Aircraft Seat Committee
This Aerospace Recommended Practice (ARP) defines acceptable methods for determining the seat reference point (SRP), and the documentation requirements for that determination, for passenger and crew seats in Transport Aircraft, Civil Rotorcraft, and General Aviation Aircraft
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) defines acceptable methods for determining the effect of disinfectants application to passenger and crew seating products in transport aircraft. This ARP selected a standard application process for all disinfectants in order to remove one variable from the investigation, which, at the time, was more concerned with the unknown effect of disinfectant chemicals on seat materials. The SAE Aircraft Seat Committee noted that most disinfectant manufacturers have their own application regimens to ensure the effectiveness of their product and that these differ from those defined in the ARP. Consequently, the standard application methodology defined in the ARP is not suitable for qualifying disinfectants, but is rather a standard method to compare the disinfectant’s behavior across a range of seat materials. Acceptance of individual disinfectants for specific application regimens is outside the scope of this ARP. The herein described application of
Aircraft Seat Committee
Seat furnishings are installed around seats and are intended to enhance passenger privacy and comfort. They may have provisions for additional occupants to be seated when the aircraft is in-flight, but would not be occupied during taxi, take-off, and landing (TTL). This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for seat furnishings with and without upper attachments (see Figures 1 and 2) to be installed in large transport category airplanes. This standard excludes seat furnishing designs that are directly attached to the seat assembly, for which AS8049 is the applicable standard. Integrated items (desk tops, cabinets, shelves, stowage areas, closeouts, dividers, etc.) connected to seat furnishings shall comply with the requirements of this AS as part of the seat furnishings
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Title 14, Code of Federal Regulations (14 CFR) Parts 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). This document provides a recommended methodology to evaluate the degree of correlation between a seat model and dynamic impact tests. This ARP also provides best practices for testing and modeling designed to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test summaries for data generated to support the development of v-ATDs and a sample v-ATD
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) defines additional documentation, environmental considerations, in-service damage limits, test and evaluation criteria necessary to support certification of aircraft seats manufactured using composite materials, in addition to requirements in AS8049 and ARP5526. This document is limited to aircraft seat composite parts in the seat primary load path from the occupant to the attachments of the seat to the aircraft. The term “composite” is inclusive of any fiber-reinforced polymer matrix materials such as carbon fiber-reinforced plastics, sandwich panels and bonded structure
Aircraft Seat Committee
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C. Other flammability studies are also cited in the AIR document to
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR Part 25 transport airplane passenger and flight attendant seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR Part 25 Appendix F, Parts IV and V. Additionally, it is recommended to use materials that meets the requirements of 14 CFR Part 25 Appendix F, Parts IV and V in applications where not required. Independent furniture installations related to seat installations are outside the scope of this document
Aircraft Seat Committee
This specification covers a titanium alloy in the form of wire for welding filler metal
AMS G Titanium and Refractory Metals Committee
This specification covers vacuum-arc-cast molybdenum in the form of wrought round bars
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of forgings up to 4.000 inches (101.60 mm) inclusive and forging stock
AMS G Titanium and Refractory Metals Committee
This specification covers aircraft quality titanium and titanium alloy metal sheet, strip and plate products
AMS G Titanium and Refractory Metals Committee
This test method provides procedures for exposing specimens of elastomer material (slab form) representative to those used in gas turbine engines to aviation lubricants under extended duration and engine relevant thermal conditions. For AS5780 requirements the time is at least 1800 hours and temperatures are 100 °C to 160 °C. Positive volume change is an indication of specimen swell and subsequent negative volume change is an indication of specimen deterioration, both properties are important in the evaluation of the compatibility of the lubricant with elastomers used in the construction of the gas turbine
E-34 Propulsion Lubricants Committee
An oil sample is placed into an open top glass vial which is then inserted into a stainless steel pressure vessel. The vessel is then sealed, pressurized, and placed into a heated aluminum block bath for 18 hours. At the end of the 18 hour time period, the vessel is removed from the heat source and allowed to cool to room temperature at which time the contents of the vial are filtered and the total sediment is reported as milligrams of sediment per 20 mL of oil
E-34 Propulsion Lubricants Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4 inches (101.6 mm
AMS G Titanium and Refractory Metals Committee
This specification covers beryllium in the form of bars, rods, tubing, and machined shapes from vacuum hot pressed powder
AMS G Titanium and Refractory Metals Committee
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of seamless tubing
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars and forgings up through 10.000 inches (254.00. mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 79.0 in2 (506.45 cm2) and forging stock of any size (see 8.7
AMS G Titanium and Refractory Metals Committee
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability, and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in Appendix D Section D.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before an oil is approved for use in their equipment. Approval and/or certification for use of a specific gas
E-34 Propulsion Lubricants Committee
This specification covers a titanium alloy in the form of sheet 0.020 to 0.1874 inch (0.51 to 4.760 mm), inclusive, in nominal thickness. (see 8.7
AMS G Titanium and Refractory Metals Committee
This specification covers the procedures for approval of products of premium-quality titanium alloys and the controls to be exercised in producing such products
AMS G Titanium and Refractory Metals Committee
Primarily to provide recommendations concerning minimizing stress-corrosion cracking in wrought titanium alloy products
AMS G Titanium and Refractory Metals Committee
This specification covers beryllium in the form of bars, rods, tubing, and machined shapes fabricated from vacuum hot pressed powder
AMS G Titanium and Refractory Metals Committee
This specification covers a tantalum alloy in the form of sheet, strip, and plate from 0.010 through 0.250 inch (0.25 through 6.35 mm), inclusive
AMS G Titanium and Refractory Metals Committee
This specification covers a titanium alloy in the form of bars, wire, forgings, flash welded rings, drawn shapes up through 10.000 inches (254.00 mm) inclusive in diameter or least distance between parallel sides and stock of any size for forging or flash welded rings
AMS G Titanium and Refractory Metals Committee
Items per page:
1 – 50 of 207323