Your Selections

Univ of Bath
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hybrid Powertrain Technology Assessment through an Integrated Simulation Approach

Univ of Bath-Richard Burke
Continental-Naroa Zaldua-Moreno, Lorenzo Pace
Published 2019-09-09 by SAE International in United States
Global automotive fuel economy and emissions pressures mean that 48 V hybridisation will become a significant presence in the passenger car market. The complexity of powertrain solutions is increasing in order to further improve fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. The results presented in this paper are from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48 V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module. The novel simulation approach undertaken uses an integrated toolchain capturing thermal, electrical and mechanical energy usage across all powertrain sub-systems. Through integrating 0-D and 1-D sub-models into a single modelling environment, the operating strategy of the technologies can be optimised while capturing the synergies that exist between them. This approach enables improved and more informed cost/benefit ratios for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation Study of the Series Sequential Turbocharging for Engine Downsizing and Fuel Efficiency

Univ of Bath-Qingning Zhang, Chris Brace, Sam Akehurst, Richard Burke
Cummins Turbo Technologies-Steve Garrett, Kai Zhang
Published 2013-04-08 by SAE International in United States
The series sequential turbocharging technology is recently gaining attention as the new round of engine downsizing and emission control becomes imperative for the engine manufacturers. The technology is able to provide combined benefits of transient performance, engine downsizing, fuel efficiency and emissions reduction with foreseeable problems of control, packaging and cost. The matching and characterization of the two interactive turbochargers is a challenging exercise. Two important questions are, how should the two machines be sized and what is the best strategy for the turbochargers across the speed range of the engine at full load. This paper addresses these two questions by comparing a variety of matching sizes and presenting an attempt to identify an optimal valve operating schedule in order to achieve the target limiting torque curve.
Annotation ability available