Results
This test code describes tests for determining characteristics of hydraulic positive displacement pumps used on off-road self-propelled work machines as referenced in SAE J1116
This SAE Standard defines the limits for a classification of engine lubricating oils in rheological terms only. Other oil characteristics are not considered or included
This SAE Standard for reliability-centered maintenance (RCM) is intended for use by any organization that has or makes use of physical assets or systems that it wishes to manage responsibly
The purpose of this document is to provide guidance for the implementation of DVI for momentary intervention-type LKA systems, as defined by ISO 11270. LKA systems provide driver support for safe lane keeping operations via momentary interventions. LKA systems are SAE Level 0, according to SAE J3016. LKA systems do not automate any part of the dynamic driving task (DDT) on a sustained basis and are not classified as an integral component of a partial or conditional driving automation system per SAE J3016. The design intent (i.e., purpose) of an LKA system is to address crash scenarios resulting from inadvertent lane or road departures. Drivers can override an LKA system intervention at any time. LKA systems do not guarantee prevention of lane drifts or related crashes. Road and driving environment (e.g., lane line delineation, inclement weather, road curvature, road surface, etc.) as well as vehicle factors (e.g., speed, lateral acceleration, equipment condition, etc.) may affect the
This procurement specification covers aircraft quality self-locking nuts for wrenching (hex, spline) and anchor (plate, gang channel, shank) types of nuts made from a corrosion and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001. Tension height nuts having overall length of threaded portion not less than 1.2 times the nominal thread diameter have 1210 MPa minimum tensile strength at room temperature. Shear height nuts having shorter threaded portion have 1100 MPa minimum tensile strength at room temperature. Maximum test temperature of parts is 730 °C
This SAE Recommended Practice covers the requirements for ethernet physical layer (PHY) qualification (and as applicable to other high-speed networks [i.e., Audio Bus, LVDS, Ser-Des, etc.]). Requirements stated in this document provide a minimum standard level of performance for the PHY in the IC to which all compatible ethernet communications PHY shall be designed. When the communications chipset is an ethernet switch with an integrated automotive PHY (xBASE-T1), then the testing shall include performance for all switch PHY ports as well as each controller interface. No other features in the IC are tested or qualified as part of this SAE Recommended Practice. This assures robust serial data communication among all connected devices regardless of supplier. The goal of SAE J2962-3 is to commonize approval processes of ethernet PHYs across OEMs. The intended audience includes, but is not limited to, ethernet PHY suppliers, component release engineers, and vehicle system engineers
This SAE Recommended Practice provides the methods of measurements for electrical and photometric characteristics of LED packages. It provides procedures, requirements, and guidelines for the methods of the measurement of luminous flux and color maintenance of LED devices (packages, arrays, and modules) for ground vehicle lighting applications
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under combined cornering and braking conditions. The properties are acquired as functions of slip angle, normal force, and slip ratio. Slip angle and normal force are changed incrementally using a sequence specified in this document. At each normal force and slip angle increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine. Users of this recommended practice may modify the recommended protocols to satisfy the needs of specific use-cases, e.g., reducing the recommended number of test loads and/or pressures for benchmarking purposes. However, due care is necessary when
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing. Communication between vehicle manufacturer and the governing authority is essential when starting official manufacturer in
This SAE Information Report describes the testing and reporting procedures that may be used to evaluate and document the excursion of a worker or civilian when transported in a seated and restrained position in the patient compartment of a ground ambulance when exposed to a front, side, or rear impact. Its purpose is to provide seating and occupant restraint manufacturers, ambulance builders, and end-users with testing procedures and documentation methods needed to identify head travel paths in crash loading events. This is a component level test. The seating system is tested in free space to measure maximum head travel paths. The purpose is not to identify stay out zones. Rather, the goal is to provide ambulance manufacturers with the data needed to design safer and functionally sound workstations for Emergency Medical Service workers so that workers are better able to safely perform patient care tasks in a moving ambulance. Descriptions of the test set-up, test instrumentation
This SAE Recommended Practice provides guidelines for procedures and practices used to obtain and record measurements and to analyze the results of the critical speed method. It is for use at accident sites using manual or electronic measurements. The method allows for many unique factors and the recommended procedure will permit a consistent use of the method in order to reduce errors and uncertainty in the results. The results from the critical speed formula should always, when possible, be compared to other accident reconstruction methodologies. When different accident reconstruction methods are used, the uncertainty of each method should be analyzed and presented
This SAE Standard prescribes the procedure for making hardenability tests and recording results on shallow and medium hardening steels, but not deep hardening steels that will normally air harden. Included are procedures using the 25 mm (1 in) standard hardenability end-quench specimen for both medium and shallow hardening steels and subsize method for bars less than 32 mm (1-1/4 in) in diameter. Methods for determining case hardenability of carburized steels are given in SAE J1975. Any hardenability test made under other conditions than those given in this document will not be deemed standard and will be subject to agreement between supplier and user. Whenever check tests are made, all laboratories concerned must arrange to use the same alternate procedure with reference to test specimen and method of grinding for hardness testing. For routine testing of the hardenability of successive heats of steel required to have hardenability within certain limits, it is sufficient to designate
This recommended practice is derived from common test sequences used within the industry. This procedure applies to all on-road passenger cars and light trucks up to 4 540 kg of GVWR. This recommended practice does not address other aspects such as performance, NVH, and durability. Test results from this recommended practice should be combined with other measurements and dynamometer tests (or vehicle-level tests), and acceptance criteria to validate a given design or configuration
This document derives from the Federal Motor Vehicle Safety Standards (FMVSS) 105 and 135 vehicle test protocols as single-ended inertia-dynamometer test procedures. The test sequences enable brake output measurement, friction material effectiveness, and corner performance in a controlled and repeatable environment. This SAE Document also includes optional sections for parking brake output performance for rear brakes with hydraulic or Electric Park Brakes (EPB). It applies to brake corners from vehicles covered by the FMVSS 105 and 135 when using the appropriate brake hardware and test parameters. The FMVSS 135 applies to all passenger cars and light trucks up to 3500 kg of gross vehicle weight (GVWR). The FMVSS 105 applies to all passenger cars, multi-purpose vehicles, buses, and trucks above 3500 kg of GVWR. This document does not include testing for school bus applications or vehicles equipped with hydraulic brakes with a GVWR above 4540 kg. This document does not evaluate or
This standard applies to all products and services produced for Aeronautics and Space enterprises and regulatory environments, including those produced by component facilities and technical and service support centers. If applied, this standard must be cited in the CM requirements of Enterprise Planning, Facilities Programs, Projects, and Supplier agreements. This standard applies throughout all phases of the program and project life cycle. CM is about the truth, trust, and traceability of products, data used to produce products, and processes throughout their life cycle and should be applied across the Enterprise at the process and product level. The significant data to which CM is applied includes scientific and engineering data; data that drives mission success; data that ensures IT security; and data used to make technical, programmatic, and business decisions. Proper application of CM is essential for product integrity and overall effectiveness. Acquirers complying with the
This document provides a recommended practice for determining decarburization and carburization in heat treated carbon and low-alloy steel parts other than case hardened parts. It is not applicable to raw materials
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance
This SAE Aerospace Standard (AS) is intended for use by those involved in the design of aircraft, missile, or space systems, and their support equipment to define the various types of fastener torque
Items per page:
50
1 – 50 of 210813