Your Selections

Mahindra & Mahindra, Ltd.
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Location based emergency call enabler

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2457
To be published on 2019-11-21 by SAE International in United States
M. Priyanka, Mahindra & Mahindra, India Sai Himaja Nadimpalli , Mahindra & Mahindra, India Keywords-Safety, Connectivity, GPS Research and/or Engineering Questions/Objective: There are many times the driver or co-passenger can experience emergency conditions whenever the vehicle is running or it is in static. These kind of situations are tough to handle even if one is victimized . The victim can be rescued on time if proper information about the situation would reach his friends or family . Limitations: In existing system, if the accidental crash happens then signal from airbag unit will wake up the mobile, Once this wake up call happens,it will activate the gsm module. The emergency contacts stored in the mobile will be dialed up and the victim can convey his emergency situation through that. The driver will be rescued only if crash happens. There is no system to rescue the driver if heart attack happens when he is driving. The additional problem which the system has is emergency contact is out of town,the victim will not be rescued Methodology: In order…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Occupant Controlled Ventilation

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2461
To be published on 2019-11-21 by SAE International in United States
Keywords-Coolant,Ventilation Research and/or Engineering Questions/Objective: Number of Occupants is the major parameter when we consider Air Conditioning System. The number of person who stays in the room may vary in the same way the person who travels in the automobile also vary throughout the distance. This is more prevalent in transportation system like bus, train and where lot of people will travel together and where dropping station in the vehicle is too frequent.In this type,operating A.C has to be varied Methodology: . Instead the number count in the vehicle will be monitored from time to time. Based on the number of count, the cabin has to be cooled or heated and accordingly corresponding power has to be drawn by the compressor from the engine. This human count can be detected based on the number of CO2 sensor located in the cabin. the amount of fresh air that should be added to a cabin can be controlled by a carbon dioxide level transmitter. When CO2 levels go up, fresh air is added until the CO2 levels…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

SMART HONKING

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2463
To be published on 2019-11-21 by SAE International in United States
Smart Honking Keywords-Safety, Connectivity, GPS M. Priyanka, Mahindra&Mahindra, India Sai Himaja Nadimpalli, Mahindra&Mahindra,India Keywords-Honking , Infotainment , GPS Research and/or Engineering Questions/Objective: In India unnecessary vehicular honking is the main reason for noise pollution. The problem is worst at traffic signals where drivers start honking without waiting for the signal to turn green or for traffic to move. Drivers show no respect to the law that prohibits the use of horn at traffic signals and other silent zones such as areas near hospitals, schools, religious places and residential areas. Vehicular honking in cities has reached at an alarming level and contributes approximately 70% of the noise pollution in our environment.The unwanted sound can affect human health and behavior, causing annoyance, depression, hypertension, stress, hearing loss, memory loss and panic attacks. Most of the drivers try to release their frustration and tension by blowing horns, possibly due to lack of awareness regarding the negative effects of noise but most likely it is because of the lack of civic sense.. Limitations: There is a provision of sign…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characterization and Durability of Mold-In-Color Engineering Plastics

Mahindra & Mahindra, Ltd.-Sandeep Kumar Shukla
  • Technical Paper
  • 2019-28-2542
To be published on 2019-11-21 by SAE International in United States
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles. Comparative analysis was conducted before and after weathering exposure at defined intervals by using the various tools like Fourier Transform infra-red spectrometer (FTIR), thermogravimetric analyzer (TGA) and universal testing machine (UTM), Izod impact tester, dynamic mechanical analyzer (DMA) to understand the impact on their chemical and mechanical properties. This study will be useful in understanding material behavior, durability, performance and product quality.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Miniaturized and sleek protective device

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2535
To be published on 2019-11-21 by SAE International in United States
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size. By this method we can save many fuses and reduce the fuse box size. An optimized fuse box minimizes the length of circuit. It translates the system into less plastics. This type of system is highly useful in systems such as ECU…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

Mahindra & Mahindra Ltd-Saravanan Muthiah
Mahindra & Mahindra, Ltd.-Divyanshu Joshi
  • Technical Paper
  • 2019-28-2397
To be published on 2019-11-21 by SAE International in United States
Title Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation Authors Mr. Shubham Kedia, Dr. Divyanshu Joshi, Dr. Muthiah Saravanan Mahindra Research Valley, Mahindra & Mahindra, Chennai Objective Objective metrics for evaluation of major vehicle dynamics performance attributes i.e. ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by ISO and SAE, which involve data processing, statistical analysis and complex mathematical operations on acquired data, through simulations or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement. In the current work, a GUI based post-processing tool is developed for automated evaluation of ride, handling and steering performance. Methodology This work is about development of a centralized platform for quantification, visualization and comparison of ride, handling and steering performance metrics from testing and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Dynamic Stability Index Calculator for Agricultural Tractors Equipped with Front End Loader

Mahindra & Mahindra, Ltd.-Pravin Balasaheb Arote
  • Technical Paper
  • 2019-28-2420
To be published on 2019-11-21 by SAE International in United States
The study aims to evaluate the lateral stability of tractor-front end loader system in consideration with difficult work conditions based on various loader bucket lifting heights from ground while driving a system on transversal slopes. In the proposed method the centre of gravity of tractor-front end loader system was calculated and analysed to evaluate the transversal overturning of the system. This overturning of the system was analysed by applying mathematical equations presented in past studies and compared with the newly developed prediction model for 3 test tractors of 25 HP. The excel spreadsheet comprised of mathematical equations used to calculate the Tractor Stability Index (TSI) on transverse slope with respect to loader bucket height and payload in dynamic condition. A criterion has been defined to categorize the Tractor Stability Index (TSI) poor to excellent on a scale of 0 to 4 where <0 being the very poor, 0-2 Poor, 2-4 Good and >4 being the excellent. It was observed that the centre of gravity of the system became lower after lowering the loader bucket closer…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Implementation and Experimentation of effective clog removal method in tractors for enhanced condenser life and Air Conditioning performance during Reaper application

Mahindra & Mahindra, Ltd.-Gurpreet Singh, Prabhakaran Arumugam, Rakesh Sharma
Mahindra Research Valley-Shreekant Srivastava
  • Technical Paper
  • 2019-28-0015
To be published on 2019-10-11 by SAE International in United States
Implementation and Experimentation of effective clog removal method in tractors for enhanced condenser life and Air Conditioning performance during Reaper application Keywords - Tractor HVAC, Condenser clogging, Trash removal method. Research and/or Engineering Questions/Objective Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably. The air conditioning performance reduces due to the clogged condenser located on the top roof compartment of operator's cabin, which is still better design than keeping in front of radiator where clogging happens every hour and customer need to stop the tractor to clean it with specific blower. Since we designed package of condenser on the top of the roof where heavy particles won't reach easily so, condenser choking/clogging every…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Systematic Work Flow for Fatigue Life Prediction of Automotive Components

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Baskar Anthonysamy, Krishna Shettipally, Manohar Kalal
  • Technical Paper
  • 2019-28-0021
To be published on 2019-10-11 by SAE International in United States
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation. A full vehicle model is prepared in ADAMS CAR and validated through Physical testing. The loads on suspension hard points extracted from the validated MBD model. These loads at various hardpoint locations, are used…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Vehicle Door Cutline Determination with Mathematical Modelling on CATIA V5

Mahindra & Mahindra, Ltd.-Hasan Askari, Sreebalajinarayanan Raadhaasaminathan
Becton Dickinson-Pawan Pandey
  • Technical Paper
  • 2019-28-0107
To be published on 2019-10-11 by SAE International in United States
Door shut-line definition is the first vital step in car body door engineering and depends on the hinge position, hinge shape, manufacturing capabilities and other parameters. In the design process, once the hinge axis definition is finalized door shut-line is defined which should satisfy two major requirements. The requirements are clearance between the door outer surface with its surrounding components (like hinges, fender, other door etc.) and assembly feasibility. Another one is the manufacturability of the proposed design. The above conditions must be checked on different locations of the door as well as w.r.t different openings of the door. The paper presents a mathematical model to determine the door shut-line position with great computational efficiency. This method propounds closure engineer with parameters to define the shut line rather than going for cumbersome manual iterative process. Instead of following an iterative approach to determine a limit for the shut-line, paper presents a mathematical formulation with an implicit equation. An innovative approach to solve implicit equation on CATIA is also discussed which significantly reduces the processing time.…