Your Selections

Lund University
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Large Eddy Simulation of an Ignition Front in a Heavy Duty Partially Premixed Combustion Engine

Lund University-Christian Ibron, Hesameddin Fatehi, Mehdi Jangi, Xue-Song Bai
Published 2019-09-09 by SAE International in United States
In partially premixed combustion engines high octane number fuels are injected into the cylinder during the late part of the compression cycle, giving the fuel and oxidizer enough time to mix into a desirable stratified mixture. If ignited by auto-ignition such a gas composition can react in a combustion mode dominated by ignition wave propagation. 3D-CFD modeling of such a combustion mode is challenging as the rate of fuel consumption can be dependent on both mixing history and turbulence acting on the reaction wave. This paper presents a large eddy simulation (LES) study of the effects of stratification in scalar concentration (enthalpy and reactant mass fraction) due to large scale turbulence on the propagation of reaction waves in PPC combustion engines. The studied case is a closed cycle simulation of a single cylinder of a Scania D13 engine running PRF81 (81% iso-octane and 19% n-heptane). Two injection timings are investigated; start of injection at -17 CAD aTDC and -30 CAD aTDC. One-equation transported turbulence sub-grid closure is used for the unresolved momentum and scalar fluxes…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Influence of Injection Strategies on Engine Efficiency for a Methanol PPC Engine

Lund University-Erik Svensson, Martin Tuner, Sebastian Verhelst
Published 2019-09-09 by SAE International in United States
Partially premixed combustion (PPC) is one of several advanced combustion concepts for the conventional diesel engine. PPC uses a separation between end of fuel injection and start of combustion, also called ignition dwell, to increase the mixing of fuel and oxidizer. This has been shown to be beneficial for simultaneously reducing harmful emissions and fuel consumption. The ignition dwell can be increased by means of exhaust gas recirculation or lower intake temperature. However, the most effective means is to use a fuel with high research octane number (RON). Methanol has a RON of 109 and a recent study found that methanol can be used effectively in PPC mode, with multiple injections, to yield high brake efficiency. However, the early start of injection (SOI) timings in this study were noted as a potential issue due to increased combustion sensitivity. Therefore, the present study attempts to quantify the changes in engine performance for different injection strategies. Simulations were performed on a heavy-duty multi-cylinder compression ignition engine fueled with methanol. Two operating conditions with different engine load were…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Literature Review on Dual-Fuel Combustion Modelling

Lund University-Menno Merts, Sebastian Verhelst
Published 2019-09-09 by SAE International in United States
In the search for low greenhouse gas propulsion, the dual fuel engine provides a solution to use low carbon fuel at diesel-like high efficiency. Also a lower emission of NOx and particles can be achieved by replacing a substantial part of the diesel fuel by for example natural gas. Limitations can be found in excessively high heat release rate (combustion-knock), and high methane emissions. These limitations are strongly influenced by operating parameters and properties of the used (bio)-gas. To find the dominant relations between fuel properties, operating parameters and the heat release rate and methane emissions, a combustion model is beneficial. Such a model can be used for optimizing the process, or can even be used in real time control. As precursor for such a model, the current state of art of dual fuel combustion modelling is investigated in this work.The focus is on high speed dual fuel engines for heavy duty and marine applications, with a varying gas/diesel ratio. Modelling is limited to the closed part of the 4-stroke engine cycle. A methodology part…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Learning Based Model Predictive Control of Combustion Timing in Multi-Cylinder Partially Premixed Combustion Engine

Lund University-Xiufei Li, Lianhao Yin, Per Tunestal, Rolf Johansson
  • Technical Paper
  • 2019-24-0016
Published 2019-09-09 by SAE International in United States
Partially Premixed Combustion (PPC) has shown to be a promising advanced combustion mode for future engines in terms of efficiency and emission levels. The combustion timing should be suitably phased to realize high efficiency. However, a simple constant model based predictive controller is not sufficient for controlling the combustion during transient operation. This article proposed one learning based model predictive control (LBMPC) approach to achieve controllability and feasibility. A learning model was developed to capture combustion variation. Since PPC engines could have unacceptably high pressure-rise rates at different operation points, triple injection is applied as a solvent, with the use of two pilot fuel injections. The LBMPC controller utilizes the main injection timing to manage the combustion timing. The cylinder pressure is used as the combustion feedback. The method is validated in a multi-cylinder heavy-duty PPC engine for transient control.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

Lund University-Hesameddin Fatehi, Oivind Andersson
Politecnico di Milano-Tommaso Lucchini
Published 2019-09-09 by SAE International in United States
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Representative Interactive Flamelets (RIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. The CFD simulations are validated using experimental measurement of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Numerical Investigation of Methanol Ignition Sequence in an Optical PPC Engine with Multiple Injection Strategies

Lund University-Mateusz Pucilowski, Hesameddin Fatehi, Sara Lonn, Alexios Matamis, Oivind Andersson, Mattias Richter, Xue-Song Bai
Birmingham University-Mehdi Jangi
Published 2019-09-09 by SAE International in United States
Methanol is a genuine candidate on the alternative fuel market for internal combustion engines, especially within the heavy-duty transportation sector. Partially premixed combustion (PPC) engine concept, known for its high efficiency and low emission rates, can be promoted further with methanol fuel due to its unique thermo-physical properties. The low stoichiometric air to fuel ratio allows to utilize late injection timings, which reduces the wall-wetting effects, and thus can lead to less unburned hydrocarbons. Moreover, combustion of methanol as an alcohol fuel, is free from soot emissions, which allows to extend the operation range of the engine. However, due to the high latent heat of vaporization, the ignition event requires a high inlet temperature to achieve ignition event. In this paper LES simulations together with experimental measurements on an heavy-duty optical engine are used to study methanol PPC engine. After a successful calibration of the pressure trace in terms of required intake temperature and combustion model, the optical natural luminosity data is used to validate prediction of ignition kernel and vapor penetration length. Moreover, it…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Cylinder Pressure Based Method for In-Cycle Pilot Misfire Detection

Lund University-Per Tunestal
Scania CV AB-Carlos Jorques Moreno, Ola Stenlaas
  • Technical Paper
  • 2019-24-0017
Published 2019-09-09 by SAE International in United States
For the reduction of emissions and combustion noise in an internal combustion diesel engine, multiple injections are normally used. A pilot injection reduces the ignition delay of the main injection and hence the combustion noise. However, normal variations of the operating conditions, component tolerances, and aging may result in the lack of combustion i.e. pilot misfire. The result is a lower indicated thermal efficiency, higher emissions, and louder combustion noise. Closed-loop combustion control techniques aim to monitor in real-time these variations and act accordingly to counteract their effect. To ensure the in-cycle controllability of the main injection, the misfire diagnosis must be performed before the start of the main injection. This paper focuses on the development and evaluation of in-cycle algorithms for the pilot misfire detection.Based on in-cylinder pressure measurements, different approaches to the design of the detectors are compared. For non-adaptive methods, a constant threshold, direct misfire probability, and posterior misfire probability detectors are investigated. For adaptive methods, an adaptive threshold update is suggested, an adaptation of the predictive stochastic models and a sensor…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

Lund University-Sebastian Verhelst
Ghent University-Gilles Decan
Published 2019-09-09 by SAE International in United States
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel. In this work, an approach based on tabulated kinetics has been used, to include detailed chemistry while still maintaining acceptable computation times. To allow for the modeling of a fumigated dual-fuel engine, this approach…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation Based Investigation of Achieving Low Temperature Combustion with Methanol in a Direct Injected Compression Ignition Engine

Lund University-Erik Svensson, Sebastian Verhelst
Published 2019-04-02 by SAE International in United States
Low temperature combustion concepts used in compression ignition engines have shown to be able to produce simultaneous reduction of oxides of nitrogen and soot as well as generating higher gross indicated efficiencies compared to conventional diesel combustion. This is achieved by a combination of premixing, dilution and optimization of combustion phasing. Low temperature combustion can be complemented by moving away from fossil fuels in order to reduce the net output of CO2 emissions. Alternative fuels are preferably liquid and of sufficient energy density. As such methanol is proposed as a viable option. This paper reports the results from a simulation based investigation on a heavy-duty multi-cylinder direct injection compression ignition engine with standard compression ratio. The engine was simulated using two different fuels: methanol and gasoline with an octane number of 70. The primary objective of the study was to find the optimal engine settings which maximized the brake efficiency for the engine. A secondary objective was to find the optimal injection strategy and combustion mode that would result if the brake efficiency was targeted.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Measurement of Gasoline Exhaust Particulate Matter Emissions with a Wide-Range EGR in a Heavy-Duty Diesel Engine

Lund University-Mengqin Shen, Sam Shamun, Per Tunestal, Martin Tuner
Published 2019-04-02 by SAE International in United States
A large number of measurement techniques have been developed or adapted from other fields to measure various parameters of engine particulates. With the strict limits given by regulations on pollutant emissions, many advanced combustion strategies have been developed towards cleaner combustion. Exhaust gas recirculation (EGR) is widely applied to suppress nitrogen oxide (NOx) and reduce soot emissions. On the other hand, gasoline starts to be utilized in compression ignition engines due to great potential in soot reduction and high engine efficiency. New engine trends raise the need for good sensitivity and suitable accuracy of the PM measurement techniques to detect particulates with smaller size and low particulate mass emissions. In this work, we present a comparison between different measurement techniques for particulate matter (PM) emissions in a compression ignition engine running on gasoline fuel. A wide-range of EGR was used with lambda varied from 3 down to 1. The compared equipment includes AVL smoke meter, AVL Micro Soot Sensor, Pegasor and Cambustion Differential Mobility Spectrometer (DMS). The goal of this paper is to compare the…
This content contains downloadable datasets
Annotation ability available