Your Selections

King Abdullah University of Science and Technology
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

King Abdullah University of Science and Technology-Samah Y. Mohamed, Nimal Naser, Mohammed Jaasim Mubarak ali, Hong Im, S.Mani Sarathy
Indian Institute of Technology-Anil Bhaurao Wakale, Raja Banerjee
Published 2018-04-03 by SAE International in United States
Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

King Abdullah University of Science and Technology-Eshan Singh, Muhammad Waqas, Bengt Johansson, Mani Sarathy
Published 2017-03-28 by SAE International in United States
The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

King Abdullah University of Science and Technology-Hong Im, Mohammed Jaasim Mubarak Ali
Convergent Science Inc.-Sameera Wijeyakulasuriya
Published 2017-03-28 by SAE International in United States
The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition. Multiple engine cycles in 3D are simulated in series like in the experiments to investigate the potential of high fidelity RANS simulations coupled with detailed chemistry, to accurately predict the CCV.Cycle to cycle variation (CCV) is expected to be due to variabilities in operating and boundary conditions, in-cylinder stratification of diesel and natural gas fuels, variation in in-cylinder turbulence levels…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

SAE International Journal of Engines

King Abdullah University of Science and Technology-Bengt Johansson
Dantec Dynamics A/S-Hua Wang
  • Journal Article
  • 2017-01-0744
Published 2017-03-28 by SAE International in United States
Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NOx emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Timing and Location of Hotspot on Super Knock during Pre-ignition

King Abdullah University of Science and Technology-Mohammed Jaasim Mubarak Ali, Francisco Hernandez Perez, S. Vedharaj, R. Vallinayagam, Robert Dibble, Hong Im
Published 2017-03-28 by SAE International in United States
Pre-ignition in SI engine is a critical issue that needs addressing as it may lead to super knock event. It is widely accepted that pre-ignition event emanates from hot spot(s) that can be anywhere inside the combustion chamber. The location and timing of hotspot is expected to influence the knock intensity from a pre-ignition event. In this study, we study the effect of location and timing of hot spot inside the combustion chamber using numerical simulations. The simulation is performed using a three-dimensional computational fluid dynamics (CFD) code, CONVERGE™. We simulate 3-D engine geometry coupled with chemistry, turbulence and moving structures (valves, piston). G-equation model for flame tracking coupled with multi-zone model is utilized to capture auto-ignition (knock) and solve gas phase kinetics. A parametric study on the effect of hot spot timing and location inside the combustion chamber is performed. The hot spot timing considered are -180 CAD, -90 CAD and -30 CAD and the locations of the hot spots are in the center and two edges of the piston surfaces. Simulation results for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

King Abdullah University of Science and Technology-Mohannad Al-Khodaier, Vijai Shankar Bhavani Shankar, Muhammad Waqas, Nimal Naser, Mani Sarathy, Bengt Johansson
Published 2017-03-28 by SAE International in United States
Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline;…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Combustion Stratification for Naphtha from CI Combustion to PPC

King Abdullah University of Science and Technology-R. Vallinayagam, S. Vedharaj, Yanzhao An, Alaaeldin Dawood, Bengt Johansson
Eindhoven University Of Technology-Mohammad Izadi Najafabadi, Bart Somers
Published 2017-03-28 by SAE International in United States
This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies.Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

King Abdullah University of Science and Technology-Muhammad Waqas, Nimal Naser, Mani Sarathy, Gustav Nyrenstedt, Bengt Johansson
Eindhoven University of Technology-Jeroen Feijs
Published 2017-03-28 by SAE International in United States
Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

King Abdullah University of Science and Technology-Vijai Shankar Bhavani Shankar, Muhammad Sajid, Khalid Al-Qurashi, Nour Atef, Issam Alkhesho, Ahfaz Ahmed, Sukho Chung, William Roberts, Mani Sarathy
Saudi Aramco-Kai Morganti
Published 2016-04-05 by SAE International in United States
Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel).This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

King Abdullah University of Science and Technology-Ahmed Elwardany, Jaeheon Sim, Hong Im
Saudi Aramco-Jihad Badra, Yoann Viollet, Junseok Chang
Published 2016-04-05 by SAE International in United States
Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps…
Annotation ability available