Your Selections

Jianghan University, China
Show Only


File Formats

Content Types







   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Personalized Lane-Changing Model for Advanced Driver Assistance System Based on Deep Learning and Spatial-Temporal Modeling

SAE International Journal of Transportation Safety

Jianghan University, China-Jun Gao, Jiangang Yi
University of Michigan-Dearborn, USA-Yi Lu Murphey
  • Journal Article
  • 09-07-02-0009
Published 2019-11-14 by SAE International in United States
Lane changes are stressful maneuvers for drivers, particularly during high-speed traffic flows. However, modeling driver’s lane-changing decision and implementation process is challenging due to the complexity and uncertainty of driving behaviors. To address this issue, this article presents a personalized Lane-Changing Model (LCM) for Advanced Driver Assistance System (ADAS) based on deep learning method. The LCM contains three major computational components. Firstly, with abundant inputs of Root Residual Network (Root-ResNet), LCM is able to exploit more local information from the front view video data. Secondly, the LCM has an ability of learning the global spatial-temporal information via Temporal Modeling Blocks (TMBs). Finally, a two-layer Long Short-Term Memory (LSTM) network is used to learn video contextual features combined with lane boundary based distance features in lane change events. The experimental results on a -world driving dataset show that the LCM is capable of learning the latent features of lane-changing behaviors and achieving significantly better performance than other prevalent models.
This content contains downloadable datasets
Annotation ability available