Your Selections

INSA Toulouse
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Orbital Drilling Optimization in High Speed Machining and Fatigue Life Enhancement by Orbital Roller Burnishing: Application to an Aluminum Alloy

INSA Toulouse-Alain Daidie
Université Paul Sabatier Ups-Landry Arnaud Kamgaing Souop, Yann Landon, Johanna Senatore
Published 2019-09-16 by SAE International in United States
Orbital drilling has proved to be advantageous to achieve aeronautical-level quality drilling (surface roughness, geometry control…) fully adapted for complex assemblies in a single operation. However, compared to conventional drilling method, this process leads to a drastic change in structure’s fatigue life probably due to a non-optimised level of residual stress. The control of the mechanical behaviour of parts obtained by orbital drilling is the goal of the European-CleanSky collaborative R&D project RODEO (Robotized Orbital Drilling Equipment and Optimized Residual Stresses, GA no.738219). In this work, an orbital drilling unit (ORBIBOT) allowing high speed machining conditions was developed by PRECISE France, that can be integrated on a lightweight industrial robot. Cutting parameters were determined through an original Tool-Material Couple optimization strategy dedicated to orbital drilling, developed with MITIS Engineering and carried out on 2024-T351 Aluminum alloy. In order to enhance the mechanical behaviour of the system (fatigue, surface hardening…), an innovative mechanical surface treatment has been introduced for investigations: orbital roller burnishing, performed right after orbital drilling. The burnisher follows a helical path around the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electromechanical Resonant Ice Protection Systems: How to Favour Fractures Propagation

INSA Toulouse-Marc Budinger
ISAE-SUPAERO-Pierrick Rouset, Valérie Pommier-Budinger
Published 2019-06-10 by SAE International in United States
Many researches focus on piezoelectric ice protection systems with the objectives to develop light and low consumption resonant electromechanical systems for de-icing. These systems use the vibrations generated by piezoelectric actuators at resonance frequencies to produce shear stress at the interface between the ice and the support or to produce tensile stress in the ice. This article presents experimental results of de-icing tests performed with resonant piezoelectric systems that generate amplitudes of vibrations to exceed ice tensile strength or ice/support adhesive shear strength. The tests show that fractures are initiated but that the ice is not always completely detached. A methodology based on the energy release rate is presented to enable a better understanding of fractures initiation and propagation. The last section part of the article is dedicated to the study of a substrate made of a sandwich structure with a honeycomb panel in order to maximize fractures propagation while minimizing energy consumption.
This content contains downloadable datasets
Annotation ability available