Your Selections

IHI Corporation
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Energy Recovery Rate from an Electric Air-Cycle System under the Cruising Altitude and Speed

IHI Corporation-Naoki Seki, Hitoshi Oyori
Akita University-Takahiro Adachi, Mikio Muraoka
Published 2019-09-16 by SAE International in United States
A new electric air-cycle system of aircrafts is investigated focusing on energy recovery from the exhaust air. The working fluid of air has the higher energy level in the cabin than in the outside during the cruise because the outside air is at low pressure and low temperature. In the system, by setting a recovery turbine behind the cabin, the discharged energy can be collected, although the working fluid through the system has been only discharged from the cabin into the outside. We perform a thermodynamic cycle-analysis, where the temperature, pressure, entropy, etc. are calculated at each position of the cycle by considering the two pressure ratios of the compressors as variable parameters to show T-s diagram. In addition, we obtain an energy recovery rate of the recovery energy to the necessary power for the electric compressor. The energy recovery rate is roughly estimated 40-80% under the reasonable practical operating conditions.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Gradationally Controlled Voltage Inverter for More Electric Aircrafts

IHI Corporation-Hitoshi Oyori
Mitsubishi Electric Corp.-Tetsuya Kojima, Masahiro Sugahara, Yusuke Shirouchi, Hisatoshi Fukumoto, Akihiko Iwata
Published 2019-09-16 by SAE International in United States
The more electric aircraft (MEA) concept has been attracting attention over recent decades to reduce emissions and fuel consumption. In MEAs, many subsystems that previously used hydraulic or pneumatic power have been replaced by electrical systems, and hence the weight of inverters has significant importance. The weight of inverters is largely attributed to passive filters that reduce the derivative of output voltages dv/dt and electromagnetic interference noises caused by common-mode voltages. To reduce the size of passive filters, multilevel inverters with 5 or more voltage steps are preferred. However, classic multilevel inverters have some challenges to achieve these step numbers without using plural dc power supplies that require massive transformers. In this work, a gradationally controlled voltage (GCV) inverter is proposed for MEAs. The GCV inverter can supply gradational quasi-sinusoidal voltages with 7 voltage steps, combining two different voltages from a three-level (main) inverter and H-bridge (sub) inverters. In addition, only one dc power supply is required for the main inverter. Furthermore, when sub inverters have faults, the GCV inverter can continue operation using the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Flight Optimization Model on Global and Interval Ranges for Conceptual Studies of MEA Systems

IHI Corporation-Hitoshi Oyori, Hirotaka Sugawara, Naoki Seki
Akita University-Yotsugi Shibuya
Published 2019-09-16 by SAE International in United States
In development of more electric aircraft applications, it is important to discuss aircraft energy management on various level of aircraft operation. This paper presents a computationally efficient optimization model for evaluating flight efficiency on global and interval flight ranges. The model is described as an optimal control problem with an objective functional subjected to state condition and control input constraints along a flight path range. A flight model consists of aircraft point-mass equations of motion including engine and aerodynamic models. The engine model generates the engine thrust and fuel consumption rate for operation condition and the aerodynamic model generates the drag force and lift force of an aircraft for flight conditions. These models is identified by data taken from a published literature as an example. First, approximate optimization process is performed for climb, cruise, decent and approach as each interval range path. Next, optimization for global range path involves whole flight path to find optimal operation condition in the flight. In aircraft energy management, fuel consumption converts into not only thrust power, but power of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electromagnetic Characteristic Comparison of Superconducting Synchronous Motor Characteristics for Electric Aircraft Propulsion Systems

IHI Corporation-Hitoshi Oyori
The University of Tokyo-Yutaka Terao, Yusuke Ishida, Hiroyuki Ohsaki
Published 2019-09-16 by SAE International in United States
This paper describes the comparison of electromagnetic characteristics of two different superconducting-motor structures for electrified aircraft propulsion systems. Future electrified aircraft demand higher output (over 16 kW/kg) and higher efficiency (> 98%) for their motors in comparison with current ones. To satisfy the demands, two kinds of superconducting motors are dealt in this study: one is partially superconducting motors (PSCMs), made of superconducting field coils and copper armature windings; the other is the fully superconducting motors (FSCMs) made of superconducting field/armature windings. They are cooled at 20 K with liquid hydrogen. We designed these two motors with finite element method to obtain the output density of 16-20 kW/kg for future electrified propulsion systems. We selected 3.0- and 5.0 MW superconducting motors, considering the application to aircraft for almost 180 passengers and 44 MW rated power for take-off. Also, we evaluated the motor weight using two kinds of cryostat materials: stainless steel (SUS) and fiber-reinforced plastic (FRP). The results show that the 5.0 MW PSCM using FRP achieved the output density of 16.9 kW/kg and the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

IHI Corporation-Satoshi Yazaki
Argonne National Laboratory-Theodore Bohn
Published 2019-04-02 by SAE International in United States
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry.The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems. Several automakers, suppliers and government employees worked together to create a test plan, perform the testing and analyze the results.To evaluate the interoperability, performance, and electromagnetic emissions of this technology, a bench test program was created, supported by the SAE J2954 WPT and Alignment…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reliability Case Analysis of an Autonomous Air Cooling System (AACS) for Aerospace Applications

IHI Corporation-Naoki Seki
University of Strathclyde-Chung Man Fong, Patrick Norman
Published 2018-10-30 by SAE International in United States
Current More Electric Aircraft (MEA) utilize Liquid Cooling Systems (LCS) for cooling on-board power electronics. In such LCS, coolant pipes around the structure of the aircraft are used to supply water glycol based coolant to sink heat from power electronics and other heat loads in the electronic bay. The extracted heat is then transferred to ram air through downstream heat exchangers.This paper presents a reliability examination of a proposed alternative Autonomous Air Cooling System (AACS) for a twin engine civil MEA case study. The proposed AACS utilizes cabin air as the coolant which is in turn supplied using the electric Environmental Control System (ECS) within the MEA. The AACS consists of electrical blowers allocated to each heat load which subsequently drive the outflow cabin air through the heat sinks of the power electronics for heat extraction. No additional heat exchanger is required after this stage in which the heated air is directly expelled overboard. One key advantage is the avoidance of liquid coolant leakage with the removal of liquid coolant from the MEA.It is necessary…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Conceptual Study of Low-Pressure Spool-Generating Architecture for More Electric Aircraft

IHI Corporation-Noriko Morioka, Tsuyoshi Fukuda
IHI Aerospace Co. Ltd.-Hitoshi Oyori
Published 2015-09-15 by SAE International in United States
This paper will propose a novel power generating system concept including an auxiliary, backup and emergency power source. Existing aircraft employ an auxiliary power unit (APU) and a ram air turbine (RAT) for power generation besides aero-engine generators. An APU works prior to starting propulsion on the ground and as a backup power plant during flight. The RAT is activated due to the need to maintain the essential systems in the case of an emergency situation. Both systems are optimized on conventional aircraft in which hydraulic, pneumatic and electric systems are supplied for control and equipment.Although a conventional aircraft needs hydro pumps and air compressors, the coming of a new era of more-electric architecture for aircraft and propulsion will be the stimulus to improve aircraft systems [1]. In more-electric aircraft, the authors focus on the low-pressure spool generation system of aero-engines. This system is anticipated for large power sources that supply electricity to a bleed-less system, though the high-pressure spool-generating capability is restricted because of the mechanical integrity of the power off-take and aero-engine control…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Study of Air/Fuel Integrated Thermal Management System

IHI Corporation-Naoki Seki, Noriko Morioka
IHI Aerospace Co. Ltd.-Hitoshi Oyori
Published 2015-09-15 by SAE International in United States
This paper describes the concept of an air/fuel integrated thermal management system, which employs the VCS (Vapor Cycle System) for the refrigeration unit of the ECS (Environment Control System), while exchanging the heat between the VCS refrigerant and the fuel into the engine, and presents a feasibility study to apply the concept to the future all electric aircraft systems.The heat generated in an aircraft is transferred to the ECS heat exchanger by the recirculation of air and exhausted into the ram air. While some aircraft employ the fluid heat transfer loop, the transferred heat is exhausted into the ram air. The usage of ram air for the cooling will increase the ram drag and the fuel consumption, thus, less usage of ram air is preferable. Another source for heat rejection is the fuel. The heat exchange with the fuel does not worsen the fuel consumption, thus, the fuel is a preferable source. However, the heat exchange between hot air and fuel has a potential fire risk, so it would be difficult to apply the air/fuel…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aircraft Secondary Power System Integration into Conceptual Design and Its Application to More Electric System

IHI Corporation-Noriko Morioka
IHI Aerospace Co. Ltd.-Hitoshi Oyori
Published 2014-09-16 by SAE International in United States
Aircraft designers determine the optimum aircraft configuration to meet performance requirements. Aircraft secondary power systems are very important for aircraft operation, however, traditionally these systems have not been considered in detail while the aircraft configuration and specifications are preliminary studied. Therefore, we constructed an aircraft conceptual design tool considering the many aircraft systems. Furthermore, we applied this design tool to a simple design problem taking into account two different kinds of secondary power system architectures (i.e. the conventional bleed air system and the more electric system), and discussed how the introduction of new aircraft systems affects results. Although the present method is theoretical and conceptual with limited applicability, the effect of the aircraft's secondary power system upon the concerning aircraft specifications was made clear both for the bleed air system and the more electric system.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Management System Concept with an Autonomous Air-Cooled System

IHI Corporation-Noriko Morioka
IHI Aerospace Co., Ltd.-Hitoshi Oyori
Published 2014-09-16 by SAE International in United States
Electrical power management is a key technology in the AEA (All-Electric Aircraft) system, which manages the supply and demand of the electrical power in the entire aircraft system. However, the AEA system requires more than electrical power management alone. Adequate thermal management is also required, because the heat generated by aircraft systems and components increases with progressive system electrification, despite limited heat-sink capability in the aircraft. Since heat dissipation from power electronics such as electric motors, motor controllers and rectifiers, which are widely introduced into the AEA, becomes a key issue, an efficient cooling system architecture should be considered along with the AEA system concept.The more-electric architecture for the aircraft has been developed; mainly targeting reduced fuel burn and CO2 emissions from the aircraft, as well as leveraging ease of maintenance with electric/electronic components. The AEA should pursue more efficient and eco-friendlier systems, which are easier to maintain than those of conventional aircraft/MEA (More-Electric Aircraft), to enhance benefits for passengers and operators. Given the crucial role of thermal management to construct the AEA, in this…
Annotation ability available