Your Selections

Hyundai Motor Group
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fault Diagnosis of an Engine through Analyzing Vibration Signals on the Block

Hyundai Motor Group-Jaemin Jin, Insoo Jung
Kookmin University-Sung-Hwan Shin PhD
  • Technical Paper
  • 2020-01-1568
To be published on 2020-06-03 by SAE International in United States
Unpredictable faults oriented from ambiguous reasons could occur in an engine of a vehicle. However, there are some symptoms from which an engine is working abnormally before the engine is stalled by faults. In this paper, methods for diagnosis of engine faults by using vibrations are proposed. Through bench tests, to extract features for fault diagnosis, various samples with normal and abnormal conditions are prepared and vibration signals from the block of an engine are measured and analyzed. To consider cost and performance of a sensor, vibrations from a knock sensor signal as well as accelerometers are analyzed. Measured vibration signals are synchronized with signal of the crank position sensor and analyzed to detect which event is involved. Modulation analysis and Hilbert transform are applied to extract features representing the symptoms of engine faults and to indicate when the abnormal event happens, respectively. As a result, the mean value of modulation indexes at modulated frequencies called as the half order modulation index (HOMI) is a factor determining if an engine is abnormal and envelope of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Engine Sound Reduction and Enhancement using Engine Vibration

Hyundai Motor Group-Insoo Jung
Hyundai Motor Co-Dong chul Lee
  • Technical Paper
  • 2020-01-1537
To be published on 2020-06-03 by SAE International in United States
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Development of the Purge Controller Design Based on H2 Concentration Estimator in Fuel Cell Electric Vehicle

Hyundai Motor Group-Soonwoo Kwon, Joonyong Lee, Soonill Jeon
  • Technical Paper
  • 2020-01-0854
To be published on 2020-04-14 by SAE International in United States
The optimal control of anode H2 concentration in fuel cell is the key performance parameter for efficiency and durability of the fuel cell electric vehicle. Implementation of H2 concentration sensor in fuel processing system is the best option to achieve the optimal control operation, but the vulnerability of the chip in H2 concentration sensor to the moisture has not been overcome and no H2 concentration sensor for vehicle application is present in the world so far. Due to the immaturity of the H2 concentration sensor, a number of researches have been being made to keep the H2 concentration in the anode at certain level without H2 concentration sensors. However the effectiveness of those technologies has not been good to meet the design specification in all the operating range of the various driving cycles and environmental condition. Therefore, the need of the novel anode H2 concentration estimator has been demanded and the development has been carried out based on the knowledge of physical laws. The simple cubic box model with same volume of fuel processing system…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Research on Kinematic Optimization of Auto Flush Door Handle System

Hyundai Motor Group-Jungho Han, Kyoungtaek Kwak, Jinwoo Nam, Oktae Jung, Jinsang Chung
  • Technical Paper
  • 2020-01-0623
To be published on 2020-04-14 by SAE International in United States
A fascinating exterior appearance is one of the most important values for customers so the realization of the innovative styling has been a major topic for car makers for several years. Also, since the base of autonomous driving and electric vehicle is being expanded recently, it is essential to not only create high-tech image on a vehicle but also realize the engineering design in reality. From that point of view, the auto flush handle can be unique sales point to enhance the degree of the completion of the exterior styling. The purpose of this study is to establish the kinematic system of auto flush door handle to overcome the exterior handicaps such as not only the excessive exposure of the internal area on the deployed position but also to determine the proper operating speed. In order to resolve these issues, the Scott-Russell mechanism is applied to the auto flush handle system. The mechanism is applied to realize the straight motion so exterior quality can be improved to minimize inner gap and prevent link exposure. In…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Model Predictive Control of an Air Path System for Multi-Mode Operation in a Diesel Engine

Hyundai Motor Group-Buomsik Shin, Yohan Chi, Minsu Kim
Garrett Advancing Motion-Paul Dickinson, Jaroslav Pekar, MinSeok Ko
  • Technical Paper
  • 2020-01-0269
To be published on 2020-04-14 by SAE International in United States
A supervisory model predictive control system is developed for the air system of diesel engine. The diesel air system is complicated, composing of many components and actuators, with significant nonlinear behavior. Furthermore, the engine usually often operates in various modes, for example to activate catalyst regeneration like LNT or DPF. Model predictive control (MPC) is based on a dynamical model of the controlled system and it features predicted actuator path optimization. MPC has been previously successfully applied to the diesel air path control problem, however, most of these applications were developed for a single operating mode (often called normal operating mode) which has only one set of high-level set point values. In reality, each engine operating mode requires a different set of set point maps in order to meet the various system requirements such as, HP-EGR modes for cold start purposes, heat-up modes for after-treatment conditioning, rich operation for catalyst purging and normal modes. Air mass and its composition requirement are heavily depending on each specific mode. This large array of mode specific set points…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Driveline Torque Profiling Based on Speed Estimation for xEVs

Hyundai Motor Group-Jiwon Oh, Jeong Soo Eo, Sung Jae Kim, Dohee Kim
  • Technical Paper
  • 2020-01-0964
To be published on 2020-04-14 by SAE International in United States
This paper suggests a method to formulate the driveline torque command for vehicles that use electric motor as part of their sources for providing driving power. The shape of the driveline torque profile notably influences the drivability criteria of the vehicle, and among them, driveline NVH and responsiveness are often tradeoffs for each other. Hence the real-time computed driveline torque profiling (DTP) enables formulation of the effective torque command at any given time to simultaneously satisfy both NVH and responsiveness criteria. Such task is fulfilled by using a shaft distortion prediction model based on a motor speed observer. A compensation torque command based on the amount of shaft distortion is formulated to prevent the shaft distortion with minimum effort. The effectiveness of the suggested driveline torque profiling method is verified using an actual vehicle, and the vehicle NVH and responsiveness are numerically assessed for comparison.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

Hyundai Motor Group-Hyunsung Jung, Hyounghyoun Kim, Yohan Chi
Seoul National University-Sanghyun Chu, Hyungjin Shin, Kihong Kim, Sunyoung Moon, Kyoungdoug Min
  • Technical Paper
  • 2020-01-0306
To be published on 2020-04-14 by SAE International in United States
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency.In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion. To see such an effect, different head types (swirl and tumble) were used with different combustion chamber shapes (conventional vs bathtub).The higher thermal efficiency with swirl motion on low load combustion was shown with stable combustion due to the faster combustion occurred by air-fuel mixing…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reduced Power Seat Heater System Using Thermal Wave Technology

Hyundai Motor Group-Scott Ziolek
  • Technical Paper
  • 2020-01-0872
To be published on 2020-04-14 by SAE International in United States
This paper presents a method of controlling the seat heater using intentional oscillations between multiple, independently controlled temperatures (each with its own tolerance range). The amplitude and frequency of these oscillations can be changed based on secondary trigger events such as changes in the interior temperature. The benefits of using this technique to heat the seat surface are improved thermal sensation and reduced energy usage over the typical drive time.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Exmani-Heat protector to Improve Sound Absorption using New Perforated Thin Aluminum Plate

Hyundai Motor Group-Jaegi Sim, Minsoo Kim, KwangMin Yoon
  • Technical Paper
  • 2020-01-0405
To be published on 2020-04-14 by SAE International in United States
This technology is a technology for reducing the gas flow noise generated from the noise of the vehicle, especially the exhaust system. The primary function of the heat protector is thermal shutdown. However, due to the increase in engine power, downsizing of engines, and the rise of consumer's eye level, solutions about noise are now emphasized. Established the manufacturing technology of 3-ply composite board which can absorb sound in the existing heat protector. For this purpose, mold technology for punching aluminum sheet, optimization technique for punching effect, unique high-strength / high-forming pattern design, sound absorbing material selection and composite sheet molding technology, and noise vibration reduction mounting technology for plate joining were developed.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Efficient Method for Active Sound Design Using an NVH Simulator

Hyundai Motor Group-Eunsoo Jo, Dongchul Park
Brüel & Kjær Sound and Vibration A/S-Wookeun Song, Moonju Hwang
  • Technical Paper
  • 2020-01-1360
To be published on 2020-04-14 by SAE International in United States
Active Sound Design (ASD) allows the Personalized Engine Sound System to be implemented for different types of vehicles and in different geographical regions. While this process is possible, it requires a lot of on-road tuning and therefore is very time consuming. This study presents an efficient way of tuning ASD sounds based on binaural synthesis in a lab environment instead of on-road tuning. The on-road vehicle operating sounds are reproduced by a desktop NVH simulator while the binaural ASD sounds are synthesized by convolving measured Binaural Vehicle Impulse Responses with the output of ASD multi-channel amplifier in real time. A set of binaural recordings on road are compared with the reproduced sound in the lab environment. The comparison results showed the validity of the proposed method for ASD. The main advantage of this approach is the possibility of back-to-back comparison across different ASD tunings. Furthermore, the unwanted variation of generated ASD sounds dependent on driving behavior on road can be minimized, and this reduces time for ASD tuning. The designed system allows supporting various ASD…