Your Selections

Gotion, Inc.
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Modeling of DC/AC Inverter for Electrified Powertrain Systems

Gotion, Inc.-Fan He
FCA US LLC-Meng Li, Bruce Geist
  • Technical Paper
  • 2020-01-1384
To be published on 2020-04-14 by SAE International in United States
A DC-to-AC main Power Inverter Module (PIM) is one of the key components in electrified powertrain systems. Accurate thermal modeling and temperature prediction of a PIM is critical to the design, analysis, and control of a cooling system within an electrified vehicle. PIM heat generation is a function of the electric loading applied to the chips and the limited heat dissipation within what is typically compact packaging of the Insulated Gate Bipolar Transistor (IGBT) module inside the PIM. This work presents a thermal modeling approach for a 3-phase DC/AC PIM that is part of an automotive electrified powertrain system. Heat generation of the IGBT/diode pairs under electric load is modeled by a set of formulae capturing both the static and dynamic losses of the chips in the IGBT module. A thermal model of the IGBT module with a simplified liquid cooling system generates temperature estimates for the PIM. Temperatures of chips, baseplates, and sinks are predicted from electric input loads. A case study is provided in which the PIM thermal model is coupled with an…