Your Selections

FEV North America, Inc.
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Predictive Break-In and Rapid Efficiency Characterization of Beam Axles

FEV North America, Inc.-Patrick R. Bias, Thomas D'Anna
FCA US LLC-Timothy Schumaier, Siqin Wei, Jasbir Singh
  • Technical Paper
  • 2020-01-1413
To be published on 2020-04-14 by SAE International in United States
Given continued industry focus on reducing parasitic losses, the ability to accurately measure the magnitude of losses on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of SAE draft standard J3218, which is a comprehensive test procedure to break-in and characterize the efficiency of beam axles. Focus areas of the study included ensuring the axle’s efficiency does not change as it is being characterized, building a detailed map of efficiency at a wide range of operating points, and minimizing test time. The resulting break-in procedure uses an asymptotic regression approach to predict fully broken in efficiency of the axle and determine how much the efficiency of the axle changes during the characterization phase. This paper outlines several temperature control methods and approaches to efficiency characterization. The paper goes on to define the proposed break-in and efficiency characterization procedures including results from characterization of several production axles.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Target Development for Transmission and Electric Motor NVH

FEV North America, Inc.-Todd Tousignant, Alex Ford, Kiran Govindswamy
Ford Motor Company-Justin Dech, Frederick Vanhaaften, Matthew Hettenhouse
Published 2019-06-05 by SAE International in United States
It is a common practice to conduct NVH fingerprinting and benchmarking assessments at the powertrain level, to understand source level noise and vibration. To assess the NVH influence of engine, e-motor, and transmission, sub-system testing is often conducted in addition to full powertrain testing. These powertrain or sub-system investigations provide valuable information regarding the status of “source” level excitations relative to targets and / or competitive powertrains. In the case of transmissions and e-machines, it is particularly important to understand source level tonal content and how this will be perceived at the vehicle level. However, variation in component design results in differences in order content, which complicates the process of objectively comparing multiple products.Multiple methods are presented here for characterizing tonal content of transmission and e-machines, based on assessments conducted in a component hemi-anechoic dynamometer test cell. Ultimately, sound quality is assessed by the customer at the vehicle level. Accordingly, the methods developed incorporate means of cascading results between component level and vehicle level. Furthermore, since the perception of tonal noise content is dependent upon…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of Automotive Environmental Noise on Mobile Phone Hands-Free Call Quality

FEV North America, Inc.-Jeffrey Pruetz, Channing Watson, Todd Tousignant, Kiran Govindswamy
Published 2019-06-05 by SAE International in United States
Environmental noises such as wind, road, powertrain, and HVAC noise are important aspects to consider when implementing a hands-free terminal for mobile phone calling from within a car. Traditionally, these environmental noises have been exclusively considered for driver comfort; however, with the introduction of the hands-free terminals (HFT) and increasing consumer demand relative to mobile phone call quality, a broader implication of high background noise levels should be considered. HFT algorithm development and implementation can and does provide a high level of background noise suppression to mitigate these concerns, but this is often done at the expense of computational power and cumulative delay during a phone call. The more advantageous solution would be to address the problem from a source and path perspective with emphasis on reduction of noise in the frequency bands which most influence call quality performance. The assessments shown throughout this paper establish a sensitivity of HFT call quality to background noise levels based on industry-standard metrics, including those defined by International Telecommunication Union (ITU) standards. These assessments were established based on…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

NVH Aspects of Electric Drive Unit Development and Vehicle Integration

FEV North America, Inc.-Thomas Wellmann, Todd Tousignant, Kiran Govindswamy, Dean Tomazic
FEV Europe GmbH-Christoph Steffens, Peter Janssen
Published 2019-06-05 by SAE International in United States
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. This will also include a strong growth in the global demand for electric drive units (EDUs).The change from conventional vehicles to vehicles propelled by EDUs leads to a reduction in overall vehicle exterior and interior noise levels, especially during low-speed vehicle operation. Despite the overall noise levels being low, the NVH behavior of such vehicles can be objectionable due to the presence of tonal noise coming from electric machines and geartrain components as well as relatively high shares of road/wind noise. In order to ensure customer acceptance of electrically propelled vehicles, it is imperative that these NVH challenges are understood and solved.This paper discusses various aspects of the EDU NVH development process. This will include a discussion of the NVH target cascading methodologies for EDUs, followed by a description of…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

FEV North America, Inc.-Satyum Joshi, Mufaddel Dahodwala, Erik Koehler, FNU Dhanraj, Michael Franke, Dean Tomazic
Michigan Technological Univ-Jeffrey Naber
Published 2019-04-02 by SAE International in United States
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor.The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine. This approach supports electrical integration of ORC expander when the turbine power output is low and mechanical/power-split integration when the turbine power output is high. At low engine speeds and high loads,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Analytical Methodology for Engine Gear Rattle and Whine Assessment and Noise Simulation

FEV North America, Inc.-Joern Baumann, Brian Campbell
Ford Motor Company-Mohammad Moetakef, Abdelkrim Zouani, Mario Felice
Published 2019-04-02 by SAE International in United States
In this paper, a CAE methodology based on a multiphysics approach for engine gear noise evaluation is reviewed. The method comprises the results and outputs from several different analytical domains to perform the noise risk assessment. The assessment includes the source-path analysis of the gear-induced rattling and whining noise. The vibration data from the exterior surface of the engine is extended through acoustic analysis to perform the engine noise simulation and to identify acoustic hot spots contributing to the noise. The study includes simulations under different engine loading conditions with results presented in both time and frequency domains. Various sensitivity analyses involving different gear geometries and micro-geometries are investigated as well. Finally, the simulation results from three different engines are compared vis-a-vis.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of Lightweight Automotive Glass Solutions on Interior Noise Levels & Sound Quality

FEV North America, Inc.-Todd Tousignant, Kiran Govindswamy
Corning Inc.-Vikram Bhatia, Shivani Polasani, W Keith Fisher
Published 2017-06-05 by SAE International in United States
The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass. Specifically, this study evaluates the influence of a lightweight windshield on wind, road, and powertrain contributions to vehicle interior noise.To facilitate this assessment, operating tests were conducted utilizing variable operating conditions and road surfaces such that varying balances of powertrain, wind, and road-induced interior vehicle noise could be evaluated. A time-domain noise transfer path analysis…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of the Future Fuel Economy Targets on Powertrain, Driveline and Vehicle NVH Development

SAE International Journal of Vehicle Dynamics, Stability, and NVH

FEV North America, Inc.-Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
  • Journal Article
  • 2017-01-1777
Published 2017-06-05 by SAE International in United States
The automotive industry continues to develop new technologies aimed at reducing overall vehicle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of technologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital towards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is imperative that these NVH challenges be understood and solved.This paper will begin with an introduction of the legislative framework with respect to fuel economy and CO2 targets for light duty vehicles. Key megatrends of engine, transmission, driveline, and electrified propulsion systems will…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimization of Electric Vehicle Exterior Noise for Pedestrian Safety and Sound Quality

FEV North America, Inc-Kiran Govindswamy
FEV North America, Inc.-Todd Tousignant, Dean Tomazic
Published 2017-06-05 by SAE International in United States
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Electric and hybrid electric vehicles do not typically utilize IC engines for low-speed operation. Under these low-speed operating conditions, the vehicles are much quieter than conventional IC engine-powered vehicles, making their approach difficult to detect by pedestrians. To mitigate this safety concern, many manufacturers have synthesized noise (using exterior speakers) to increase detection distance. Further, the US National Highway Traffic Safety Administration (NHTSA) has provided recommendations pursuant to the Pedestrian Safety Enhancement Act (PSEA) of 2010 for such exterior noise signatures to ensure detectability. This has created potential challenges for automakers to meet the anticipated regulatory requirements while maintaining a high level of sound quality for both exterior and interior noise.In development of exterior noise signals, the goal is to achieve the required levels and transient pitch requirements, while ensuring…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

FEV North America, Inc.-Dean Tomazic, Michael Franke
FEV GmbH-Werner Bick, Christoph Menne
Published 2017-03-28 by SAE International in United States
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand. The modern DI Diesel engine has gained an increasing market share in the recent 25 years in the European market and has converted from a niche application to an established, highly appreciated propulsion system in the Light-Duty vehicle segment, covering passenger car as well as light commercial applications. In vehicle classes with high market penetration this low CO2 concept offers a substantial contribution…
This content contains downloadable datasets
Annotation ability available