Your Selections

FCA US LLC
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Application of an Objective Metric for Transient Engine Clatter Noise

FCA US LLC-Anil Charan
InDepth Engineering Solutions-Aniket Parbat
Published 2019-06-05 by SAE International in United States
Several powertrain noise phenomena have been studied over the years. Sound quality metrics, like loudness, sharpness, modulation, and tonality, among others, have been developed to characterize powertrain noises. While these readily available metrics work well on steady state and some transient noises, they do not correlate directly with subjective impressions. Moreover, it is difficult to assign a meaningful single rating for time varying noises that may also be associated with simultaneous variations in frequency content. This paper summarizes the process of creating a vehicle level objective metric and its application to blind noise samples to verify correlation with subjective impressions, particularly in association with clatter noise at moderate engine speeds (2000-3500 rpm) with light to moderate throttle tip-ins. The main results include a single number rating and a rating curve as a function of engine speed useful for comparative NVH assessments of multiple vehicles or of multiple hardware iterations on a development vehicle with objectionable clatter content. The latter application is particularly useful since it gives correct feedback to an uninitiated engineer about the hardware…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

New Half Shaft Bench Test Methodology for NVH Characterization

FCA US LLC-Wei Yuan, Ahmad Abbas, Francisco Antonio Sturla
Siemens PLM Software-Saeed Siavoshani, Prasad Balkrishna Vesikar
Published 2019-06-05 by SAE International in United States
The main purpose of this paper is to develop a reliable bench test to understand the vibratory behavior of the half shafts under applied torque comparable to an idle condition. In some cases, the half shaft path is a major factor influencing the idle vibration in the vehicle. At idle condition vehicle vibrations are caused by engine excitation and then they pass through different paths to the body structure. Half shaft manufacturers generally characterize shaft joints for their frictional behavior and typically there is no data for vibration characteristics of the half shaft under idle conditions. However, for predictive risk management, the vibratory behavior of the half shaft needs to be identified. This can be achieved from measured frequency response functions under preloaded test conditions.This bench test enables manufacturers to conduct comprehensive design of experiments on the impact of powertrain vibration input while transmitting through the half shaft into the vehicle system. This method enables the study of the half shaft at the component level, because studying the half shaft at vehicle level is difficult…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Target Setting Process for Hybrid Electric Drives Using TPA, Jury Study, and Torque Management

FCA US LLC-Vinod Singh, Anil Charan
InDepth Engineering Solutions-Aniket Parbat
Published 2019-06-05 by SAE International in United States
The idea of improved efficiency without compromising the “fun to drive” aspect has renewed the auto industry’s interest toward electrification and hybridization. Electric drives gain from having multiple gear ratios which can use advantageous operating set points thus increasing range. Furthermore, they benefit significantly from frequent decelerations and stopping as is experienced in city driving conditions. To recuperate as much energy as possible, deceleration is done at high torque. This presents an interesting but serious sound quality issue in the form of highly tonal whine harmonics of rapidly changing gears that do not track with vehicle speed thus being objectionable to the vehicle occupants. This paper presents an NVH target setting process for a hybrid electric transmission being integrated into two existing vehicles, one belonging to the premium segment and another aimed at enthusiasts with off-road applications. The demand for power has shifted from mechanical domain into electrical domain, and as such, the solution to electric drive NVH issues also lay partly, in the way these drive systems are calibrated. A time-domain Transfer Path Analysis…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

New Method for Decoupling the Powertrain Roll Mode to Improve Idle Vibration

FCA US LLC-Syed F. Haider, Ahmad Abbas, Francisco Sturla
Published 2019-06-05 by SAE International in United States
Modern engines have high torque outputs and have low RPM due to increased demand for fuel efficiency. Vibrations caused by such engines have to be mitigated. Decoupling the roll mode from the remaining five rigid body modes results in a response which is predominantly about the torque roll axis (TRA) and helps reduce vibrations. Therefore, placing the mounts on the TRA early in the design phase is crucial. Best NVH performance can be obtained by optimizing the powertrain mount parameters viz; Position, Orientation and Stiffness. Many times, packaging restricts the mounts to be placed about the TRA resulting in degradation in NVH performance. Assuming that the line through the engine mount (Body side) centers is the desired TRA, we propose a novel method of shifting the TRA by adding mass modifying the powertrain inertia such that the new TRA is parallel to and on top to the desired TRA. This in turn will decouple the roll mode and reduce vibrations. This problem is formulated as an optimization problem. The numerical examples presented in this paper…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Use of Active Vibration Control to Improve Vehicle Refinement while Expanding the Usable Range of Cylinder Deactivation

FCA US LLC-Jeff Orzechowski, Gaurav Agnihotri, Vikas Juneja
Published 2019-06-05 by SAE International in United States
Cylinder deactivation has been in use for several years resulting in a sizable fuel economy advantage for V8-powered vehicles. The size of the fuel-economy benefit, compared to the full potential possible, is often limited due to the amount of usable torque available in four-cylinder-mode being capped by Noise, Vibration, and Harshness (NVH) sensitivities of various rear-wheel-drive vehicle architectures. This paper describes the application and optimization of active vibration absorbers as a system to attenuate vibration through several paths from the powertrain-driveline into the car body. The use of this strategy for attenuating vibration at strategic points is shown to diminish the need for reducing the powertrain source amplitude.This paper describes the process by which the strategic application of these devices is developed in order to achieve the increased usage of the most fuel efficient reduced-cylinder-count engine-operating-points.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Integrating a Proactive Quality Control Concept into Machining Operation of a Crankshaft Manufacturing Process

FCA US LLC-Loda Bazzi
Published 2019-04-02 by SAE International in United States
Competition in the manufacturing industry is ever increasingly intense. Manufacturing organizations that want to grow and prosper must embrace a discipline of constant improvement. Their engineering departments are tasked with improving existing manufacturing processes in terms of quality and throughput, which is vital to competing on a global scale. Manufacturers strive to utilize technologies to extract efficiencies from their existing processes. Reducing scrap and rework is the paramount goal in increasing a processes’ efficiency. The foundation of this study is to analyze a production line to determine the quality status throughout the manufacturing process. The intention is to react to process instability before the production becomes non-compliant (scrap/rework) which will significantly improve productivity.By incorporating the proposed technology into the production process, the desired achievement will be to spot process variables at the earliest stages so that counter measures can be taken to stabilize the process before production drifts into non-compliance. Furthermore, the technology will communicate with machining operations to initiate counter measures such as program offsets, tool changes and wheel dressings. The main goal of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

FCA US LLC-Jordan Elizabeth Easter, Kiran Premchand
University of Michigan-Stanislav Bohac, John Hoard
Published 2019-04-02 by SAE International in United States
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.Evaluations regarding the impact of these varied soots on GPF performance is accomplished through monitoring of GPF filtration efficiency as a function of soot loading and monitoring of soot oxidation rates during GPF regeneration events. Size-dependent filtration efficiency across the GPF is determined with a Scanning Mobility Particle Sizer (SMPS). Soot oxidation during regeneration events is determined using a radio frequency (RF) sensor and periodic weighing of the GPF on…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Estimates of the Convective Heat-Transfer Coefficients for Under-Hood and Under-Body Components

Thomas Crabtree
FCA US LLC-Alaa El-Sharkawy
Published 2019-04-02 by SAE International in United States
In this paper we investigate the application of time constant to estimate the external heat transfer coefficient (h) around specific vehicle components. Using this approach, a test sample in the form of a steel plate is placed around the component of interest. A step change is applied to air temperature surrounding the sample. The response of the sample temperature can be analyzed and the heat transfer coefficient can therefore be calculated. Several test samples were installed at several locations in the vehicle under-hood and underbody. A series of vehicle tests were designed to measure the time constant around each component at various vehicle speeds. A correlation between estimated heat transfer coefficients and vehicle speed was generated. The developed correlations and the measured component ambient temperatures can be readily used as input for thermal simulation tools. This approach can be very helpful whenever CFD resources may not be available. Verification of the derived coefficients was conducted by comparing the derived heat transfer coefficients to those derived through detailed CFD analysis. Assumptions, limitations and applications of this…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Application of Simplified Load Path Models for BIW Development

FCA US LLC-Marshall LeVett, James Truskin
Altair Engineering, Inc.-Nicolas Zagorski, Eric Nelson
Published 2019-04-02 by SAE International in United States
Simplified load path models (SLMs) of the body in white (BIW) are an important tool in the body structure design process providing a highly flexible, idealized concept model to explore the design space through load path evaluation, material selection, and section optimization with rapid turnaround. In partnership with Altair Engineering, the C123 process was used to create and optimize SLMs for BIW models at FCA US LLC. These models help structures engineers to develop efficient load paths, sections, and joints for improved NVH as ultra-high-strength steels enable thinner gauges throughout the body structure. A few key differences in the SLM modeling method are contrasted to previous simplified BIW modeling methods. One such example is the parameterization of cross sections through response surface models rather than using contemporary finite element descriptions of arbitrary cross sections. Another difference is the modeling of structural joints as 1-D spring elements rather than high-fidelity shell models or superelements. To validate the new process, two BIW-level correlation studies are presented. The first study presents the correlation of an entire BIW SLM…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Efficiency Evaluation of Lower Viscosity ATF in a Planetary Automatic Transmission for Improved Fuel Economy

FCA US LLC-Haiying Tang
FEV North America Inc.-Thomas D'Anna, Jason E. Murtagh, Thomas Wellmann
Published 2019-04-02 by SAE International in United States
With continued industry focus on reducing parasitic transmission and driveline losses, detailed studies are required to quantify potential enablers to improve vehicle fuel economy. Investigations were undertaken to understand the influence of lower viscosity Automatic Transmission Fluids (ATF) on transmission efficiency as compared with conventional fluids. The objectives of this study were to quantify the losses of lower viscosity ATF as compared with conventional ATF, and to understand the influence of ATF properties including viscosities, base oil types, and additive packages on fuel efficiency.The transmission efficiency investigations were conducted on a test bench following a vehicle-based break-in of the transmission using a prescribed drive cycle on a chassis dynamometer. At low temperature, the lower viscosity ATF showed a clear advantage over the conventional ATF in both spin loss and loaded efficiency evaluations. At high temperature, mixed results were obtained; it appeared the chemistry of ATF influenced the results.Overall, using the low viscosity fluid tends to improve loss behavior, but the benefits can be offset if the transmission hardware employed is not specifically designed for low…
This content contains downloadable datasets
Annotation ability available