Your Selections

Achates Power Inc.
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fuel Injection System for Opposed-Piston Gasoline Compression-Ignited (OP-GCI) Engines

Achates Power Inc.-Rodrigo Zermeno, Donovan Quimby, Clark Klyza, Fabien Redon
Delphi Technologies Inc.-Kevin Hoyer, Jean Herve Petot, Erol Kahraman, Guillaume Meissonnier
Published 2019-04-02 by SAE International in United States
Opposed-piston engines have been in production since before the 1930’s because of their inherent low heat losses and high thermal efficiency. Now, opposed-piston gasoline compression ignition (OP-GCI) engines are being developed for automotive transportation with stringent emissions targets. Due to the opposed-piston architecture and the absence of a cylinder head, fuel injection requirements and packaging are significantly different than conventional 4-stroke engines with central-mounted injectors. The injection process and spray characteristics are fundamental to achieving a successful combustion system with high efficiency, low emissions, and low combustion noise.In this paper, the fuel injection system for the Achates 2.7L, 3-cylinder OP-GCI engine is described. The fuel system was designed for 1800 bar maximum fuel pressure with two injectors mounted diametrically opposed in each cylinder. Two fuel rails were mounted on each side of the engine and were supplied independently from two crank-driven unit pumps mounted at the front of the engine. CFD tools were used to investigate nozzle design and spray characteristics for minimal wall wetting and good air utilization. Simulation results indicated that relatively narrow…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cold Start HD FTP Test Results on Multi-Cylinder Opposed-Piston Engine Demonstrating Rapid Exhaust Enthalpy Rise to Achieve Ultra Low NOx

Achates Power Inc-Fabien Redon, Dan Schum, John Headley
Achates Power Inc.-Samrat Patil, Ahmad Ghazi
Published 2018-04-03 by SAE International in United States
The 2010 emission standards for heavy-duty diesel engines in the U.S. have established a limit for oxides of nitrogen (NOx) emissions of 0.20 g/bhp-hr., a 90% reduction from the previous emission standards. However, it has been projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with the 2010 emission standards, the upcoming National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and ozone will not be achieved in California without further significant reductions in NOx emissions from the heavy-duty vehicle fleet. Given this, there is potential of further reduction in NOx emissions limit standards for heavy duty engines in the US. Recently there have been extensive studies and publications focusing on ultra-low NOx after treatment technologies that help achieve up to 0.02g/bhp-hr. at tailpipe [1].To achieve ultra-low NOx emission levels over the composite HD FTP cycle, rapid heat energy must be provided to the diesel exhaust after-treatment system during cold start portion of the cycle, and peak NOx reduction efficiency must be maintained during the hot-start…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Developing a 55% BTE Commercial Heavy-Duty Opposed-Piston Engine without a Waste Heat Recovery System

Achates Power Inc-Nishit Nagar, Rodrigo Zermeno, Michael chiang, Isaac Thomas
Achates Power Inc.-Neerav Abani
Published 2017-03-28 by SAE International in United States
Heavy-duty vehicles, currently the second largest source of fuel consumption and carbon emissions are projected to be fastest growing mode in transportation sector in future. There is a clear need to increase fuel efficiency and lower emissions for these engines. The Opposed-Piston Engine (OP Engine) has the potential to address this growing need. In this paper, results are presented for a 9.8L three-cylinder two-stroke OP Engine that shows the potential of achieving 55% brake thermal efficiency (BTE), while simultaneously satisfying emission targets for tail pipe emissions. The two-stroke OP Engines are inherently more cost effective due to less engine parts. The OP Engine architecture presented in this paper can meet this performance without the use of waste heat recovery systems or turbo-compounding and hence is the most cost effective technology to deliver this level of fuel efficiency.In this paper, engine performance results are presented for the 9.8L two-stroke OP Engine that employs currently available engine components, such as supercharger, turbocharger and after-treatment and features a uniquely designed piston bowl shape to enhance mixing with a…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of Injection Pattern Design on Piston Thermal Management in an Opposed-Piston Two-Stroke Engine

Achates Power Inc.-Rishikesh Venugopal, Neerav Abani, Ryan MacKenzie
Published 2013-09-24 by SAE International in United States
This paper presents analytical and measured results on the effects of injection pattern design on piston thermal management in an Opposed-Piston, Two-Stroke (OP2S) diesel engine. The OP2S architecture investigated in this work comprises two opposing pistons forming an asymmetric combustion chamber with two opposing injectors mounted on the cylinder wall. This unique configuration offers opportunities to tailor the injection pattern to control the combustion heat flux and resulting temperatures on the piston surfaces while optimizing combustion simultaneously. This study utilizes three-dimensional (3D) computational fluid dynamics (CFD) with state-of-the-art spray, turbulence and combustion models that include detailed chemistry to simulate the in-cylinder combustion and the associated flame/wall interactions. In addition, the measurements comprise a real-time thermocouple system, which allows for up to 14 locations to be monitored and recorded on the intake and exhaust pistons.The CFD results are shown to predict the measured performance and emissions characteristics with very good correlation. Using the CFD model results, hot spot areas on the piston surfaces-resulting from impingement of the injection plumes during the combustion event-are computed. A proprietary…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cylinder Cooling for Improved Durability on an Opposed-Piston Engine

Achates Power Inc-Michael Wahl
Achates Power Inc.-Patrick Lee
Published 2012-04-16 by SAE International in United States
The cooling system design for a two-stroke, opposed-piston (OP) engine is substantially different from that of a conventional four-stroke engine as the opposed-piston engine requires efficient cooling at the center of the cylinder where the heat load is highly concentrated. A thermally efficient design ensures engine durability by preserving the oil film at the top ring reversal zone. This is achieved by limiting the surface temperature of the liner to below 270°C at this location. Various water jacket designs have been analyzed with computational fluid dynamics (CFD) using a "discretized" Nusselt number approach for the gas side heat flux prediction. With this method, heat transfer coefficients are computed locally given the flow field of the combustion gases near the liner surface and then multiplied by the local gas/liner temperature difference to generate the heat flux distribution into the cylinder liner. The heat flux is then averaged over the cycle before being applied as a boundary condition to the CFD simulation. The baseline design consists of a simple water jacket with coolant flowing axially from the…
Annotation ability available