Results
This SAE Standard establishes the test procedures, performance requirements, and criteria necessary to evaluate minimum safety and reliability requirements of a children’s snowmobile as identified in 1.2
This SAE Standard was prepared by Technical Committee 1, Engine Lubrication, of SAE Fuels and Lubricants Council. The intent is to improve communications among engine manufacturers, engine users, and lubricant marketers in describing lubricant performance characteristics. The key objective is to ensure that a correct lubricant is used in each two-stroke-cycle engine
This SAE Standard provides test procedures, requirements, and guidelines for a parking lamp
Instructions on this chart are intended to be used as a ready reference by personnel responsible for servicing off-road self-propelled work machines described in SAE J1116, categories 1, 2, 3, and 4. Detailed maintenance and service guidelines are reserved for maintenance, operator, and lubrication manuals as defined in SAE J920
This SAE Recommended Practice applies to off-road, self-propelled work machine categories of earthmoving, forestry, road building and maintenance, and specialized mining machinery as defined in SAE J1116
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors. The equipment specified here will identify smaller refrigerant leaks when servicing motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning the equipment design or use beyond that of sampling a flammable refrigerant, save those described in 3.1 and 3.2 of this document. All requirements of this standard shall be verified in SAE J2911
This SAE Recommended Practice describes the basic content requirements, barcode specifications, and functional test specifications of the vehicle identification number (VIN) label. On the vehicle, the VIN label is to be mounted in a readily accessible location for use of a barcode scanning device
The information in this SAE Recommended Practice has been compiled by Technical Committee 1 (Engine Lubrication) of the SAE Fuels and Lubricants Division. The intent is to provide those concerned with the design and maintenance of two-stroke-cycle engines with a better understanding of the properties of two-stroke-cycle lubricants. Reference is also made to test procedures which may be used to measure the chemical and physical characteristics of these lubricants
This specification covers the requirements for self-sealing, quick-disconnect couplings for fuel and oil system components
This SAE Recommended Practice establishes a procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers that may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, SAE J187, SAE J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery
The AS6224 specification covers environment resistant, permanent insulation repair sleeves for repairing different types of insulation damages of wire or cable jackets in installed applications. The repair sleeve is intended to repair damaged primary wire or cable jacket covers where the shielding and wire conductors are not damaged
This SAE Standard applies to off-road self-propelled work machines as categorized in SAE J1116. Fast fill fueling typically applies to self-propelled machines with a fuel capacity over 380 L, although fast fill fueling can be used on machines with smaller fuel capacity
This document includes requirements of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet/turbofan e Military high-performance fighter and attack f Helicopter This document will cover general requirements and recommended practices for all types of landing and taxi lights. More specific recommendations for LED lights in particular can be found in ARP6402
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the calibration and acceptance of icing wind tunnels to be used in testing of aircraft components and systems and for the development of simulated ice shapes. This document is not directly applicable to air-breathing propulsion test facilities configured for the purposes of engine icing tests, which are covered in AIR6189. This document also does not provide recommended practices for creating Supercooled Large Drop (SLD) or ice crystal conditions, since information on these conditions is not sufficiently mature for a recommended practice document at the time of publication of ARP5905A. Use of facilities as part of an aircraft’s ice protection Certification Plan should be reviewed and accepted by the applicable regulatory agency prior to testing. Following acceptance of a test plan, data generated in these facilities may be submitted to regulatory agencies for use in the certification of aircraft ice
This SAE Aerospace Recommended Practice (ARP) specifies criteria for the design, development, standardization, and comprehension testing of placards containing pictures, drawings, symbols, and/or written instructions for locating and operating aircraft emergency equipment. This ARP also provides guidance in the selection and implementation of warning placards intended to instruct occupants inside, and rescue personnel outside, the aircraft
This SAE Recommended Practice provides test procedures, requirements, and guidelines for rear fog lamp systems
This SAE Standard presents a method of determining the stiffness of interior trim materials, substrates, and composites by a three-point bending test
This SAE Standard defines requirements relating to the elements of design, operation, and maintenance of light utility vehicles (LUVs). The safety specifications in this document apply to any self-propelled, operator-controlled, off-highway vehicle 1829 mm (72 inches) or less in overall width, exclusive of added accessories and attachments, operable on three or more wheels or tracks, primarily intended to transport material loads or people, with a gross vehicle weight of 2500 kg (5500 pounds) or less, and a maximum design speed less than or equal to 40.23 km/h (25 mph). This document is not intended to cover go-karts (ASTM F2007-07a), fun-karts (ASTM F2011-02e1), dune buggies, and all terrain-vehicles (ATVs) complying with ANSI/SVIA 1
This specification covers a corrosion-resistant steel in the form of flat wire 0.005 to 0.095 inch (0.13 to 2.41 mm) thick, inclusive
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate
This specification covers a copper-nickel-tin alloy in the form of mechanical tube 1.100 to 13.6 inches (28 to 346 mm) in outer diameter (see 8.11
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated, operator controlled forward warning horn devices, primarily intended for use on self-propelled, work machines as defined by SAE J1116 (limited to categories of (1) construction and (2) general purpose industrial
This SAE Aerospace Information Report (AIR) presents preferred design, assembly, and repair practices for sealing of aircraft integral fuel tanks, including rework of applied fuel tank seals. It addresses engineering designs for integral fuel tanks as they are currently found in practice and discusses the most practical and conservative methods for producing a reliable, sealed system. Although this AIR presents practices for sealing of integral fuel tanks, the practices presented within this report are practices that are carried throughout sealing that include both pressure and environmental aircraft sealing. Design preferences for optimum sealing are not within the scope of this document. Such discussions can be found in the United States Air Force (USAF) sponsored report AFWAL-TR-87-3078, “Aircraft Integral Fuel Tank Design Handbook.” Key objectives of the fuel tank sealing process are to produce a sealing plane that is leak-free and corrosion resistant, especially at fastener
This SAE Standard covers general requirements and dimensions of various sizes of eyelet and spade type terminals
This specification covers a columbium (niobium) alloy in the form of foil, sheet, strip, or plate
This specification covers a columbium alloy in the form of bars, rods, or wire
This SAE Aerospace Information Report (AIR) provides basic information on the use of slipper seal sealing devices when used as piston (OD) and rod (ID) seals in aerospace fluid power components such as actuators, valves, and swivel joints, including: The definition of a slipper seal and the description of the basic types in use. Guidelines for selecting the type of slipper seal for a given design requirement are provided in terms of friction, leakage, service life, installation characteristics, and interchangeability
This SAE Aerospace Recommended Practice recommends general criteria for the development and installation of an aircraft emergency signal system to permit any crew member (flight or cabin) to inform all other crew members that an emergency evacuation situation exists and that an evacuation has been or should be immediately started
This standard covers supplemental requirements for low tension primary cable intended for use as Fusible Links (Fuse Links) at a nominal system voltage of 60 V DC (25 V AC) or less in surface vehicle electrical systems. These supplemental requirements are intended to qualify cables for an extreme current overload
Data is information that has been recorded in a form or format convenient to move or process. It is important to distinguish between data and the format. The format is a structured way to record information, such as engineering drawings and other documents, software, pictures, maps, sound, and animation. Some formats are open source, others proprietary. Regardless of the format, there are three broad types of data. Table 1 lists these types of data and provides examples. DM, from the perspective of this standard, consists of the disciplined processes and systems utilized to plan for, acquire, and provide management and oversight for product and product-related business data, consistent with requirements, throughout the product and data life cycles. Thus, this standard primarily addresses product data and the business data required for stakeholder collaboration extending through the supply chain during product acquisition and sustainment life cycle. This standard has broader application
This specification covers nonfluorescent, magnetic particles in the form of dry powders in the form of single or composite magnetic particle intended to be suspended in oil or conditioned water vehicle for use in the wet method, magnetic particle inspection
This specification covers an aluminum alloy in the form of sheet and plate with thickness from 0.008 to 4.000 inches (0.20 to 101.6 mm), inclusive, clad on two sides (see 8.6
This specification covers an aluminum alloy in the form of sheet clad on both sides with a different alloy for sheet thicknesses of 0.020 to 0.128 inches (0.51 to 3.25 mm), inclusive, in nominal thickness (see 8.5
This specification covers an aluminum alloy in the form of two types of welding wire
This specification covers an aircraft-quality, low-alloy steel in the form of heat treated bars and forgings 1.00 inches (25.4 mm) and under in nominal cross section or diameter and for hexagonal shapes, least distance between parallel sides
This document contains minimum operational performance specification (MOPS) of active on-board INFLIGHT ICING DETECTION SYSTEMS (FIDS). This MOPS specifies FIDS operational performance which is the minimum necessary to satisfy regulatory requirements for the design and manufacture of the equipment to a minimum standard and guidance towards acceptable means of compliance when installed on an AIRCRAFT. Detection of ICE accreted on the AIRCRAFT during ground operations is not considered in this document. This MOPS was written for the use of FIDS on AIRCRAFT as defined in 1.3 and 2.3. Expected minimum performance specifications for FIDS and their functions are provided in Section 3. The minimum performance requirements as defined in Section 3 do not consider SYSTEM performance as installed on the AIRCRAFT. Performance in excess of the minimum performance may be required by the SYSTEM installed on an AIRCRAFT in order to meet regulatory or operational requirements. This topic is considered
This SAE Standard describes a laboratory test procedure for measuring the vibration damping performance of a system consisting of a damping material bonded to a vibrating cantilevered steel bar. The bar is often called the Oberst bar (named after Dr. H. Oberst) and the test method is often called the Oberst bar test method. Materials for damping treatments may include homogeneous materials, nonhomogeneous materials, or a combination of homogeneous, nonhomogeneous, and/or inelastic (such as aluminum foil) materials. These materials are commonly installed in transportation systems such as ground vehicles, marine products, and aircraft to reduce vibration at resonance, and thus reduce the noise radiation from the vibrating surface. The test method described herein was developed to rank order materials for application on panels using general automotive steel but also may be applicable to other situations or conditions. Damping performance for most materials and systems varies as a function
Items per page:
50
1 – 50 of 212614