Search
Advanced Search
of the following are true
(
)

Results

Items (212,271)
The purpose of this standard is to provide uniform methods for defining, quantifying, and classifying the residual stress in metallic structural alloy products and finished parts. These stresses may exist within a single element, or they may be the result of a joining process. Such quantification and classification may be required when residual stresses within mill stock or preforms can impact further in-process distortion during machining or other processes, and when residual stresses within finished components can impact final mechanical properties and performance (especially strength, durability, and fracture performance).
null, null
This SAE Aerospace Information Report (AIR) provides a comprehensive overview of primary water content measurement instrumentation, for both facility-based icing research and in-flight icing research, over the range of commonly used aircraft certification icing envelopes. It includes information on the theory of operation of the instruments, system errors and limitations, and practical considerations when using them for cloud characterization. This document does not address other icing cloud measurements of interest, such as particle sizing, or measurement of phenomena such as snow, sleet, or hail.
AC-9C Aircraft Icing Technology Committee
This SAE Aerospace Information Report (AIR) addresses many of the significant issues associated with effects of inlet total-pressure distortion on turbine-engine performance and stability. It provides a review of the development of techniques used to assess engine stability margins in the presence of inlet total-pressure distortion. Specific performance and stability issues that are covered by this document include total-pressure recovery and turbulence effects and steady and dynamic inlet total-pressure distortion.
S-16 Turbine Engine Inlet Flow Distortion Committee
The purposeful integration of existing and emerging technologies into CM practice will enable collaboration with supporting systems and provide stakeholders access to authoritative and trusted data in a timely fashion at their desktop to help drive educated decision making. This lays to rest the misguided myth that CM and supporting systems operate at cross-purposes. What does it mean to have CM in a world of new initiatives and 2-week sprints (i.e., time-boxed work periods), multiple increments producing Minimum Viable Products (MVP) and synchronized with Model Based Systems Engineering (MBSE) while being digitally transformed? MBSE initiatives drive the jump from “2D” data to “3D” data, thereby becoming a Model-Centric practice. Products now enable technology to push the product lifecycle management process to new levels of efficiency and confidence. This mindset is evidenced by five major functions of CM, as discussed below, and described in EIA-649C.
G-33 Configuration Management
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program tor testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343.
Truck and Bus Aerodynamics and Fuel Economy Committee
This document specifies a set of rules for the creation and management of the V2X ASN.1 Module Collection. These rules apply to the development of any message, data element, data frame, or any ASN.1 Entity that is part of the V2X ASN.1 Module Collection, regardless of the SAE technical report in which it appears. The intended audience for these rules includes every technical committee (TC) under the SAE V2X Communications Steering Committee.
V2X Core Technical Committee
This SAE Aerospace Standard (AS) provides the method for presentation of gas turbine engine steady-state and transient performance calculated using computer programs. It also provides for the presentation of parametric gas turbine data including performance, weight, and dimensions computed by computer programs. This standard is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. This standard is applicable, but not limited to, the following program types: data reduction, steady-state, transient, preliminary design, study, specification, status, and parametric programs.
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
This SAE Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools, and publications related to active safety systems. This information report is a survey of active safety systems and related terms. The definitions offered are descriptions of functionality rather than technical specifications. Included are warning and momentary intervention systems, which do not automate any part of the dynamic driving task (DDT) on a sustained basis (SAE Level 0 as defined in SAE J3016), as well as definitions of select features that perform part of the DDT on a sustained basis (SAE Level 1 and 2).
Active Safety Systems Standards Committee
This report provides the process for developing a flexible test framework to support the creation of system-level cooperative driving automation (CDA) Feature test procedures, which are intended to be objective, repeatable, and transparent, and enable collaborative testing of the Feature. Utilizing a Feature’s functional and logical scenario details, it provides the building blocks necessary to develop cooperative automated driving system (C-ADS)-equipped vehicle (C-ADS-V) and CDA infrastructure (CDA-I) system diagrams, identify the interfaces to and from the systems, and identify the set of functional test support components specific to the CDA Feature. Utilizing these details, along with the Feature-specific concrete scenarios, a method for developing a test scope and system level use-case-focused test procedures is provided.
Cooperative Driving Automation(CDA) Committee
This SAE Recommended Practice defines key terms used in the description and analysis of video based driver eye glance behavior, as well as guidance in the analysis of that data. The information provided in this practiced is intended to provide consistency for terms, definitions, and analysis techniques. This practice is to be used in laboratory, driving simulator, and on-road evaluations of how people drive, with particular emphasis on evaluating Driver Vehicle Interfaces (DVIs; e.g., in-vehicle multimedia systems, controls and displays). In terms of how such data are reduced, this version only concerns manual video-based techniques. However, even in its current form, the practice should be useful for describing the performance of automated sensors (eye trackers) and automated reduction (computer vision).
null, null
This SAE Information Report develops a concept of operations (ConOps) to evaluate a cooperative driving automation (CDA) Feature for occluded pedestrian collision avoidance using perception status sharing. It provides a test procedure to evaluate this CDA Feature, which is suitable for proof-of-concept testing in both virtual and test track settings.
Cooperative Driving Automation(CDA) Committee
This document provides a mapping between provider service identifiers (PSIDs)—allocated to SAE by the appropriate registration authorities—and SAE technical specifications of applications identified by those PSIDs. It is intended that this document will be updated regularly, including information about the publication status of SAE technical reports.
V2X Core Technical Committee
This SAE Aerospace Recommended Practice (ARP) outlines a development, design/repair, and industrial guidance for systems using additive manufacturing (AM) to respond to aircraft requirement specifications. These recommendations reflect procedures that have been effective for designing/repairing metallic alloy components.
AMS AM Additive Manufacturing Metals
The intended upper bound of this specification is that the particle size distribution (PSD) of powders supplied shall be <60 mesh (250 μm) and that no powder (0.0 wt%) greater than 40 mesh (425 μm) is allowed.
AMS AM Additive Manufacturing Metals
This SAE Aerospace Recommended Practice (ARP) describes a method to measure, track, and characterize the history of powder feedstock when consumed in the production of parts via additive manufacturing (AM). The history captured as part of this ARP includes AM process exposure, feedstock consumption, blending, and losses associated with the totality of the AM workflow. This document also outlines a two-part metric schema for used powder feedstock consequential of its process exposure history. This metric schema also enables aligning risk determination and usage practices for used powder when based on a correlation between tabulated values in the scheme and user-identified metrics. These correlated metrics with schema values may also be used when establishing powder blending workflows or identifying end-of-life for feedstock.
AMS AM Additive Manufacturing Metals
This SAE Aerospace Recommended Practice (ARP) covers the requirements for a Stationary Runway Weather Information System (referred to as the system) to monitor the surface conditions of airfield operational areas to ensure safer ground operations of aircraft. The system provides (1) temperature and condition information of runway, taxiway, and ramp pavements and (2) atmospheric weather conditions that assist airport personnel to maintain safer and more efficient airport operations. The system can be either a wired system or a wireless system.
G-15 Airport Snow and Ice Control Equipment Committee
This document contains guidance for designers, specifiers, regulatory personnel, purchasers, managers, and others who specify or use optical simulations of aircraft lights. All aircraft lighting will be considered interior, flight deck, and exterior lighting. Guidance on standard methods of analysis and presentation of data will be provided. Although this document concentrates on lighting, many of the principles covered will be helpful in other types of optical simulation, such as for displays, non-visible radiation, etc.
A-20B Exterior Lighting Committee
This specification covers a titanium alloy in the form of preforms and parts produced by electron beam-powder bed fusion (EB-PBF) that are subjected to post-deposition hot isostatic press (HIP). Preforms may require subsequent machining or surface finishing to meet requirements for their intended final part application.
AMS AM Additive Manufacturing Metals
This specification covers a titanium alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
This AIR by the G-11AT (Automation and Tools) subcommittee, examines the failure mode, effects and criticality analysis (FMECA) requirements and procedures as performed on current and earlier vintage engineering programs. The subcommittee has focused on these procedures in relation to the concurrent engineering (CE) environment to determine where it may be beneficial, to both FMECA analysts and users, to automate some or all of the FMECA processes. Its purpose is to inform the reader about FMECAs and how the FMECA process could be automated in a concurrent engineering environment. There is no intent on the part of the authors that the material presented should become requirements or specifications imposed as part of any future contract. The report is structured to include the following subjects: a A FMECA overview b The current FMECA process c FMECA in the concurrent engineering environment d FMECA automation e The benefits of automation
G-41 Reliability
This SAE Aerospace Standard specifies the dimensional, design criteria, fabrication, performance, operational, environmental, and testing requirements for interline pallets requiring airworthiness approval for loading onto civil transport aircraft equipped with NAS3610/AS36100 restraint systems and using pallet nets meeting the requirements of AS1492. Type II/2 covers NAS3610/AS36100 code sizes. Type III pallets have been removed from this SAE Aerospace Standard revision.
AGE-2 Air Cargo
This document provides a high-level ontology and lexicon for describing on-road ADS-operated vehicle behavioral competencies and driving maneuvers that comprise routine/normal performance of the complete DDT, as defined in SAE J3016. It provides definitions of behavior, maneuver, scenario, and scene. This initial high-level lexicon and ontology are developed for ADS driving behaviors, including considerations for hierarchy of behaviors, and relationships among maneuvers, operational design domain (ODD) elements, and object and event detection and response (OEDR). Considerations for describing scenarios using this lexicon and ontology are discussed. This document describes ADS-operated vehicle motion control maneuvers during routine/normal operation. Maneuvers of other road users are not evaluated. This document assumes left-hand drive vehicles and road infrastructure. Applicability to right-hand drive vehicles and roadway infrastructure would require adjustment to such vehicles and
On-Road Automated Driving (ORAD) Committee
This SAE Standard describes the concept of operation, use cases, and message flows to create a Sensor Sharing Service (SSS). This service enable RSUs and V2X1 vehicles to share information about their localized driving environment. This work defines message structure, V2X entity requirements, and information elements to describe detected objects to facilitate sensor sharing.
Advanced Applications Technical Committee
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system and builds upon experiences gained in the industry in the last 10 years.
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
The scope of this document is the concept of operations including reference system architecture, the user needs, the system functional and performance requirements, the messages, the corresponding data frames and elements, and other related functionality to enable V2X-based fee collection and other financial transactions.
Tolling Applications Technical Committee
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR Part 25 transport airplane passenger and flight attendant seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR Part 25 Appendix F, Parts IV and V. Additionally, it is recommended to use materials that meets the requirements of 14 CFR Part 25 Appendix F, Parts IV and V in applications where not required. Independent furniture installations related to seat installations are outside the scope of this document.
Aircraft Seat Committee
This SAE Standard provides requirements to support applications for the maneuver sharing and coordinating service (MSCS) beyond broadcast of basic safety messages (BSMs). This is to improve road safety and traffic efficiency by sharing and coordinating vehicle maneuvers via vehicle-to-everything (V2X) communications. This document lays out use case scenarios and defines vehicle-to-vehicle (V2V) application protocols, system requirements and message sets for MSCS. The defined message sets for MSCS will result in identifying new message types, data frames, and data elements for SAE J2735.
V2X Vehicular Applications Technical Committee
This specification establishes the minimum requirements for fused filament fabrication (FFF) feedstock.
AMS AM Additive Manufacturing Non-Metallic
This specification covers a titanium alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
This specification establishes process controls for the repeatable production of aerospace parts by Laser Powder Bed Fusion (L-PBF). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
AMS AM Additive Manufacturing Metals
This standard has notes/guidance narratives interspersed throughout. These notes/guidance narratives are identified by a header and by text in italics. This standard defines a series of requirements that results in a specific AM machine qualified to produce material (see GN1) in compliance to an aerospace materials specification. The machine control and/or configuration types are discussed in the next sections. The industry (including AIA and ASTM) generally acknowledges that there are three qualification milestones for AM machines; nevertheless, this document will focus only on the initial two stages, namely: Installation Qualification (IQ): Producing objective evidence to show that all key aspects of the process equipment and ancillary system installation adhere to the AM Part Producer’s specification and that the recommendations of the supplier of the equipment are suitably considered; this is tied to a specific machine serial number. Operational Qualification (OQ): Establishing
AMS AM Additive Manufacturing Metals
This specification prescribes process requirements for batch processing of used, metal powder originating from an existing additive manufacturing process workflow for reuse in subsequent additive manufacturing of aerospace parts in non-closed loop additive manufacturing machines. Such powders may be pre-alloyed or commercially pure. This specification is not limited to a specific additive manufacturing process workflow as the originating source of material to be reused. It is intended to define those procedures and requirements necessary to achieve required cleanliness and performance of metal powder feedstock to be reintroduced into the same additive manufacturing process from which such powder originated. This specification is intended to be used in conjunction with relevant AMS powder specifications and AMS process specifications for additive manufacturing. Unless otherwise specified, powder prepared for reuse following this specification is intended to be conforming in physical and
AMS AM Additive Manufacturing Metals
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
This specification is to prescribe process requirements for production (from raw materials through preparation for shipment, see 8.6) of metal powder feedstock for use in additive manufacturing of aerospace parts. This specification covers requirements for the production of metal powder for use as feedstock in additive manufacturing. Such powders may be pre-alloyed or commercially pure. This specification is not limited to a specific powder production method. It is intended to define those procedures and requirements necessary to achieve required cleanliness and performance of metal powder feedstock to be used in the manufacture of aerospace parts. This specification is intended to be used in conjunction with AMS powder specifications for additive manufacturing.
AMS AM Additive Manufacturing Metals
This specification covers a corrosion and heat-resistant nickel alloy in the form of parts produced by laser-powder bed fusion (L-PBF) that are subjected to post-deposition stress relief (SR), hot isostatic press (HIP) and solution anneal operations. Parts may require subsequent machining or surface finishing to meet specific application requirements.
AMS AM Additive Manufacturing Metals
Items per page:
1 – 50 of 212271