Terms:
SAE International Journal of Fuels and Lubricants
AND
12
AND
2
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CORRIGENDUM: Rapid Methodology to Simultaneous Quantification of Differ Antioxidants in Biodiesel Using Infrared Spectrometry and Multivariate Calibration

SAE International Journal of Fuels and Lubricants

National Institute of Metrology, Quality and Technology (INMETRO), Brazil-Luciano Nascimento Batista, Viviane F. Mello, Mauricio G. Fonseca, Wericksonb F.C. Rocha
National Institute of Technology, Brazil-Claudete N. Kunigami
  • Journal Article
  • 04-12-01-0004.1
Published 2019-05-15 by SAE International in United States
No Abstract Available.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation into the Tribological Properties of Biodiesel-Diesel Fuel Blends Under the Run-In Period Conditions

SAE International Journal of Fuels and Lubricants

Islamic Azad University, Iran-Mahmoud Amiri Nazari Barsari, Alireza Shirneshan
  • Journal Article
  • 04-12-02-0009
Published 2019-06-25 by SAE International in United States
Lubricity is a very important issue for diesel fuel injectors and pumps (of an engine) that are lubricated by the fuel itself. Biodiesel as an alternative fuel has a number of technical advantages compared to conventional diesel. It is required to perform more research about the tribological behavior of biodiesel blends under run-in period conditions at different rotational speeds. Friction characteristics of biodiesel (mixture of sunflower and soybean methyl ester) were studied by using a four-ball wear testing machine. Results indicated that the friction was reduced with the increase in rotational speed under the run-in period conditions. Moreover, the results showed that the friction coefficient decreases at rotational speeds of 600 and 900 rpm as the proportion of biodiesel increases in the fuel blend. This is due to higher viscosity of biodiesel and the presence of free fatty acids and monoglyceride and diglyceride components in this fuel, which improve the lubricity properties of the fuel blends. However, the coefficient of friction of the fuel blends that contained more biodiesel (B50 and B100) increased at rotational…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Effect of NO2/NOx Ratio on the Performance of a SCR Downstream of a SCR Catalyst on a DPF

SAE International Journal of Fuels and Lubricants

Michigan Technological University, USA-Venkata Rajesh Chundru, Gordon G. Parker, John H. Johnson
  • Journal Article
  • 04-12-02-0008
Published 2019-06-14 by SAE International in United States
Different aftertreatment systems consisting of a combination of selective catalytic reduction (SCR) and SCR catalyst on a diesel particulate filter (DPF) (SCR-F) are being developed to meet future oxides of nitrogen (NOx) emissions standards being set by the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). One such system consisting of a SCRF® with a downstream SCR was used in this research to determine the system NOx reduction performance using experimental data from a 2013 Cummins 6.7L ISB (Interact System B) diesel engine and model data. The contribution of the three SCR reactions on NOx reduction performance in the SCR-F and the SCR was determined based on the modeling work. The performance of a SCR was simulated with a one-dimensional (1D) SCR model. A NO2/NOx ratio of 0.5 was found to be optimum for maximizing the NOx reduction and minimizing NH3 slip for the SCR for a given value of ammonia-to-NOx ratio (ANR). The SCRF® + SCR system was simulated using the 2D SCR-F + 1D SCR system model. For all the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Analysis of SCR Spray Evolution and Sizing in High-Temperature and Flash Boiling Conditions

SAE International Journal of Fuels and Lubricants

Continental Automotive Systems US Inc., USA-Nic van
Universita degli Studi di Perugia, Italy-Gabriele Brizi, Lucio Postrioti
  • Journal Article
  • 04-12-02-0006
Published 2019-05-16 by SAE International in United States
In the last years, new stringent emission legislation in terms of nitrogen oxides (NOx) has been leading to a massive development of advanced after-treatment systems for diesel engines. Among them, selective catalytic reduction (SCR) technology has proved to be an effective approach for NOx reduction in a wide range of engine operating conditions. In SCR systems, the interaction between diesel exhaust fluid (DEF) and hot exhaust gas is crucial to promote the chemical reactions through which ammonia is produced. Hence, a proper matching between the exhaust pipe architecture and the DEF spray is mandatory for obtaining an adequate SCR efficiency, especially in close-coupled configurations and moderate exhaust gas temperature conditions. To this end, significant benefits could be derived via appropriate SCR injector thermal management, as the spray structure is significantly influenced by the DEF temperature upstream of the injector nozzle. In this article, the results of a spray analysis campaign carried out on a prototype DEF dosing system are presented. The goal of this research is to investigate the influence of both air and DEF…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of Hydrotreated Vegetable Oil (HVO) Applicability as an Alternative Marine Fuel Based on Its Performance and Emissions Characteristics

SAE International Journal of Fuels and Lubricants

Norwegian University of Science and Technology, Norway-Sergey Ushakov, Nicolas Lefebvre
  • Journal Article
  • 04-12-02-0007
Published 2019-05-16 by SAE International in United States
In current study, the combustion and emission characteristics of hydrotreated vegetable oil (HVO) were studied and compared to those of conventional marine gas oil (MGO). The main goal was to verify its applicability as an alternative marine fuel. All experiments were performed using generator set and propeller-law test cycles, i.e., standardized E2 and E3 cycles respectively. Additional emphasis was paid to the particulate matter (PM) emissions combining gravimetric and particle number measurements. The obtained results indicate average 10-15 % reduction in nitrogen oxides (NOx) emissions, while total unburned hydrocarbons (THC) emissions were reduced by 50-55 %. It is believed that a much higher cetane number of HVO together with its superior chemical composition (overall higher H/C ratio, absence of aromatics and heavy-boiling compounds) plays a vital role here. This may also explain the observed around 30 % PM mass reduction, which however showed a strong dependence on load (fuel-air ratio) and speed (time available for combustion) settings. Measured particle size distributions showed a clearly unimodal nature for both the tested fuels with pronounced accumulation (soot)…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Capturing the Impact of Fuel Octane Number on Modern Gasoline Vehicles with Octane Indices

SAE International Journal of Fuels and Lubricants

Argonne National Laboratory, USA-Forrest Jehlik, Henning Lohse-Busch, Simeon Iliev
Illinois Institute of Technology, USA-Carrie Hall
  • Journal Article
  • 04-12-02-0005
Published 2019-05-09 by SAE International in United States
The need for high efficiency automotive engines has led to more complex air handling and fuel injection systems, higher compression ratios, more advanced combustion and aftertreatment systems, and the use of fuels with higher octane ratings. Higher octane number fuels have a lower propensity to knock. This work studies the influence of changing fuel octane rating on two modern production gasoline vehicles, one with a naturally aspirated, port injected engine and the other with a turbocharged, direct injected engine, using fuels with four different octane number grades (with 85, 87, 91, and 93 anti-knock indices) and operated over a variety of driving cycles and temperature conditions. Unlike previous studies, this effort develops and demonstrates a methodology that isolates fuel effects on fuel consumption and provides a clear view of the octane impact on existing vehicles. While fuel octane rating can also impact factors such as the allowable compression ratio and gear shifting strategies, this study examines fuel consumption changes that are solely attributable to octane rating on production vehicles. The developed approach uses results from…
This content contains downloadable datasets
Annotation ability available