Search
Advanced Search
of the following are true

Results

Items (208,725)
This SAE Aerospace Information Report (AIR) provides guidance on using environmental, electrochemical, and electrical resistance measurements to monitor environment spectra and corrosivity of service environments, focusing on parameters of interest, existing measurement platforms, deployment requirements, and data processing techniques. The sensors and monitoring systems provide discrete time-based records of (1) environmental parameters such as temperature, humidity, and contaminants; (2) measures of alloy corrosion of the sensor; and (3) protective coating performance of the sensor. These systems provide measurements of environmental parameters, sensor material corrosion rate, and sensor coating condition for use in assessing the risk of atmospheric corrosion of a structure. Time-based records of environment spectra and corrosivity can help determine the likelihood of corrosion to assess the risk of corrosion damage of the host structure for managed assets and aid in establishing
HM-1 Integrated Vehicle Health Management Committee
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock
AMS E Carbon and Low Alloy Steels Committee
This specification covers aircraft-quality, low-alloy steel in the form of round, seamless tubing
AMS E Carbon and Low Alloy Steels Committee
This specification covers the requirements for producing a zinc phosphate coating on ferrous alloys and the properties of the coating
AMS B Finishes Processes and Fluids Committee
This SAE Standard describes a reference system architecture based on LTE-V2X technology defined in the set of ETSI standards based on 3GPP Release 14. It also describes cross-cutting features unique to LTE-V2X PC5 sidelink (mode 4) that can be used by current and future application standards. The audience for this document includes the developers of applications and application specifications, as well as those interested in LTE-V2X system architecture, testing, and certification
C-V2X Technical Committee
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results
Cooling Systems Standards Committee
This SAE Aerospace Recommended Practice (ARP) offers an overview of the many key processes that are being transformed as the aerospace industry is rapidly digitalizing. The G-31 Electronic Transactions in Aerospace committee has been established to develop standards related to these processes. This report, also known as the “cornerstone” document for the committee, is a comprehensive look at processes associated with commercial aviation. Because of universal convergence of these technologies, the technologies described here are applicable to other domains as well
G-31 Digital Transactions for Aerospace
This SAE Recommended Practice covers the most common applications of electronically controlled on-demand clutch systems used in passenger (car and light truck) vehicle applications. This practice is applicable for torque modulation devices used in transfer cases, electronic limited slip differential (eLSD) cross-axle devices, rear drive module (RDM) integrated torque transfer devices with or without disconnect capability, and other related torque transfer devices
Drivetrain Standards Committee
The processes addressed in this Aerospace Information Report (AIR) apply to the acquisition and validation of dynamic total-pressure and distortion data from CFD models simulating turbulent flows in inlets. The results of these processes can be used in the formation of an inlet-flow-distortion methodology that addresses turbine-engine operability assessments
S-16 Turbine Engine Inlet Flow Distortion Committee
The turbine-engine-inlet flow distortion descriptors summarized in this document apply to the effects of inlet total-pressure, planar-wave, and total-temperature distortions. Guidelines on stability margin, destabilizing influences, types and purposes of inlet data, AIP definition, and data acquisition and handling are summarized from AIR5866, AIR5867, ARP1420, and AIR1419. The degree to which these recommendations are applied to a specific program should be consistent with the complexity of the inlet/engine integration. Total-pressure distortion is often the predominant destabilizing element that is encountered and is often the only type of distortion to be considered, i.e, not all types of distortion need to be considered for all vehicles
S-16 Turbine Engine Inlet Flow Distortion Committee
This document is not a standard, it is a candidate for a standard being submitted to SAE for their consideration as a comment to SAE J2735. The term SAE J2735 SE candidate is used within this document to refer to this submission. This document specifies dialogs, messages, and the data frames and data elements that make up the messages specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC"), communications systems. Although the scope of this Standard is focused on DSRC, these dialogs, messages, data frames and data elements have been designed, to the extent possible, to be of use for applications that may be deployed in conjunction with other wireless communications technologies. This standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the
V2X Communications Steering Committee
This SAE Standard provides the minimum requirements for high-power, two-conductor jumper cable plug and receptacle for truck-trailer jumper cable systems. It includes the test procedures, design, and performance requirements. This document covers receptacles rated 12 VDC nominal and at more than 30 A (amperes) up to and including 150 A, and is intended for a single circuit with one power conductor and one common return conductor. Single-conductor high-current connectors are not recommended for future designs because of inadequate ground return through fifth wheel/king pin. Cable size selection is to be made by the vehicle OEM for specific applications and the specific voltage drop requirements of those applications. This SAE Standard covers two variants of high-power two-conductor connections: a heavy duty version, with horizontally aligned pins, typically for lift-gate battery charging; and a medium duty version, with vertically aligned pins, typically for loads such as power
Truck and Bus Electrical Systems Committee
This SAE Document specifies DSRC interface requirements for V2V Safety Awareness applications, including detailed Systems Engineering documentation (needs and requirements mapped to appropriate message exchanges). These applications include: Emergency Vehicle Alert, Roadside Alert, and Safety Awareness Alerts for Objects and Adverse Road Conditions. This document extends the V2V Communications capabilities defined in J2945/1 to support these applications, and the National ITS Architecture. The purpose of this SAE Document is to enable interoperability for V2V Safety Awareness communications
V2X Vehicular Applications Technical Committee
This SAE Standard provides measurement methods to determine HUD optical performance in typical automotive ambient lighting conditions. It covers indoor measurements with simulated outdoor lighting for the measurement of HUD virtual images. HUD types addressed by this standard includes w-HUD (windshield HUD) and c-HUD (combiner HUD) with references to Augmented Reality (AR) HUD as needed. It is not the scope of this document to set threshold values for automotive compliance; however, some recommended values are presented for reference
Vehicular Flat Panel Display Standards Committee
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance. For definitions of
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile PM (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane. As the particle losses are size dependent, the magnitude of correction factors can
E-31P Particulate Matter Committee
This document establishes best practices to measure vehicle stopping distance on dry or wet asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations for vehicles with original equipment tires. It is recommended that the test method within be adopted for all vehicles less than 4536 kg (10000 pounds) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used. Since tires play a significant role in stopping distance, this procedure covers tire types typically used as original equipment on new vehicles including all-season, summer, and all-terrain tires. This document may serve as a procedural guideline for all tire types, but the surface temperature correction formulas in this procedure were developed using all-season tires and may not be applicable to other tire types
Highway Tire Committee
This report covers engine tests performed in Altitude Test Facilities (ATFs) with the primary purpose of determining steady state thrust at simulated altitude flight conditions as part of the in-flight thrust determination process. As such it is complementary to AIR1703 and AIR5450, published by the SAE E-33 Technical Committee. The gross thrust determined using such tests may be used to generate other thrust-related parameters that are frequently applied in the assessment of propulsion system performance. For example: net thrust, specific thrust, and exhaust nozzle coefficients. The report provides a general description of ATFs including all the major features. These are: Test cell air supply system. This controls the inlet pressure and includes flow straightening, humidity and temperature conditioning. Air inlet duct and slip joint. Note that the report only covers the case where the inlet duct is connected to the engine, not free jet testing. Thrust stand force measurement system
E-33 In Flight Propulsion Measurement Committee
This SAE Information Report provides SAE’s recommendations for meeting the requirements for REAL NOx accuracy demonstration and for the implementation of REAL NOx binning requirements as defined in OBD regulations 13 CCR 1971.1 and 13 CCR 1968.2
null, null
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways
Truck and Bus Brake Systems Committee
SAE J2534-1 defines a standard vehicle network interface that can be used to reprogram emission-related control modules. However, there is a need to support vehicles prior to the 2004 model year, as well as non-emission related control modules. The SAE J2534-2 document meets these needs by detailing extensions to API version 04.04 of the SAE J2534-1 specification. It is not required for an interface to be fully compliant with API version 04.04 of the SAE J2534-1 specification to implement some of the features specified in this document. Together, these extensions provide the framework for a common interface to protect the software investment of the vehicle OEMs and scan tool manufacturers. Only the optional features will be described by this document and are based on the December 2004 publication of SAE J2534-1
Vehicle E E System Diagnostic Standards Committee
This standard specifies the system requirements for an on-board vehicle-to-vehicle (V2V) safety communications system for light vehicles1, including standards profiles, functional requirements, and performance requirements. The system is capable of transmitting and receiving the SAE J2735-defined basic safety message (BSM) [1] over a dedicated short range communications (DSRC) wireless communications link as defined in the Institute of Electrical and Electronics Engineers (IEEE) 1609 suite and IEEE 802.11 standards [2] to [6
V2X Core Technical Committee
This document provides a list of data elements and event triggers for recording of event data relevant to crash investigations for heavy vehicles. The list of data elements includes recommended source(s) and formatting
Truck and Bus Event Data Recorder Committee
This SAE J2971 Recommended Practice describes a standard naming convention of aerodynamic devices and technologies used to control aerodynamic forces on truck and buses weighing more than 10000 pounds (including trailers
Truck and Bus Aerodynamics and Fuel Economy Committee
The motorcycle terminology presented herein addresses two-wheel single track vehicles, as well as motorized three wheel cycles. Although two-wheeled, single track scooters and mopeds are similar to traditional motorcycles, they have many characteristics which differentiate them from motorcycles, and while some terms will apply, this Terminology addresses motorcycles specifically, unless otherwise noted. Likewise, some three wheel cycles may have some similar design features and share components with motorcycle, the dynamics and handling of three wheel vehicles differs from two wheel, single track motorcycles. The terminology presents definitions covering the following subjects: dynamics and handling of single track vehicles, motorcycle categories and types, motorcycle crash dynamics and technology, and in-depth crash investigations, motorcycle design and components, systems, and equipment, motorcycle operation, operational environments and hazards, rider protective equipment including
Motorcycle Technical Steering Committee
This document reviews the state of the art for data scaling issues associated with air induction system development for turbine-engine-powered aircraft. In particular, the document addresses issues with obtaining high quality aerodynamic data when testing inlets. These data are used in performance and inlet-engine compatibility analyses. Examples of such data are: inlet recovery, inlet turbulence, and steady-state and dynamic total-pressure inlet distortion indices. Achieving full-scale inlet/engine compatibility requires a deep understanding of three areas: 1) geometric scaling fidelity (referred to here as just “scaling”), 2) impact of Reynolds number, and 3) ground and flight-test techniques (including relevant environment simulation, data acquisition, and data reduction practices). The Model-to-Full Scale Subcommittee of the S-16 Turbine Engine Inlet Flow Distortion Committee has examined archives and has obtained recollections of experts regarding air induction system development
S-16 Turbine Engine Inlet Flow Distortion Committee
This SAE Aerospace Recommended Practice (ARP) lists the lamps in Table 1 that are recommended for the type of service indicated. This list is not intended as a catalog and does not include many types that are now in use. This specification is not applicable to Solid State Lighting Lamp Assemblies (Based LED lamps). It does, however, reflect current practice
A-20A Crew Station Lighting
This SAE Aerospace Recommended Practice (ARP) is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances
AGE-3 Aircraft Ground Support Equipment Committee
This document outlines general requirements for the use of CFD methods for aerodynamic simulation of medium and heavy commercial ground vehicles weighing more than 10000 pounds. The document provides guidance for aerodynamic simulation with CFD methods to support current vehicle characterization, vehicle development, vehicle concept development, and vehicle component development. The guidelines presented in the document are related to Navier-Stokes and Lattice-Boltzmann based solvers. This document is only valid for the classes of CFD methods and applications mentioned. Other classes of methods and applications may or may not be appropriate to simulate the aerodynamics of medium and heavy commercial ground vehicle weighing more than 10000 pounds
Truck and Bus Aerodynamics and Fuel Economy Committee
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter powerplants. These factors are installation losses, accessory power extraction, and operational effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the RFM. It is intended that the methods presented herein prescribe and define each factor as well as an approach to measuring said factor. Only basic installations of turboshaft engines in helicopters are considered. Although the methods described may apply in principle to other configurations that lead to more complex installation losses, such as an inlet particle separator, inlet barrier filter (with or without a bypass system), or infrared suppressor, specialized or individual techniques may be required in these cases for the determination and definition of engine installation losses. Some rotorcraft may use an
S-12 Powered Lift Propulsion Committee
This section presents the basic equations for computing ice protection requirements for nontransparent and transparent surfaces and for fog and frost protection of windshields. Simplified graphical presentations suitable for preliminary design and a description of various types of ice, fog, frost, and rain protection systems are also presented
AC-9C Aircraft Icing Technology Committee
This SAE Standard establishes the minimum performance requirements for electrical distribution systems for use in dollies and trailers in single or multiple configurations for 12 VDC nominal applications
Truck and Bus Electrical Systems Committee
This SAE Standard provides test procedures, requirements, and guidelines for stop lamps and turn signal lamps intended for use on vehicles 2032 mm or more in overall width. Stop lamps and front- and rear-turn signal lamps conforming to the requirements of this document may be used on vehicles less than 2032 mm in overall width
Heavy Duty Lighting Standards Committee
This SAE Recommended Practice provides test procedures, requirements, and guidelines for high-mounted stop lamps and high-mounted turn signal lamps intended for use on vehicles 2032 mm or more in overall width. This document applies to trucks, motor coaches, van type trailers, and other vehicles with permanent structure greater than 2800 mm high. This document does not apply to school buses, truck tractors, pole trailers, flat-bed trailers, pick-up truck with dual wheels and trailer converter dollies. The purpose of the high-mounted stop lamp(s) and high-mounted turn signal lamp(s) is to provide a signal over intervening vehicles to the driver of following vehicles
Heavy Duty Lighting Standards Committee
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model. The test methods and procedures described here include those for six-component force measurements and measurements of pressures and velocities both on the vehicle/model
Road Vehicle Aerodynamics Forum Committee
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
This test plan is broken into three major sections for the testing of bus controllers Electrical, Protocol and Noise tests
AS-1A Avionic Networks Committee
This Technical Information Report defines the proprietary diagnostic communication protocol for ABS or VSA ECU (Electronic Control Unit) implemented on some Honda vehicles. This protocol does not apply to all Honda vehicles. This document should be used in conjunction with SAE J2534-2 in order to fully implement the communication protocol in an enhanced SAE J2534 interface. The purpose of this document is to specify the requirements necessary to implement the communication protocol in an enhanced SAE J2534 interface
Vehicle E E System Diagnostic Standards Committee
SAE J1939-81 Network Management defines the processes and messages associated with managing the source addresses of applications communicating on an SAE J1939 network. Network management is concerned with the management of source addresses and the association of those addresses with an actual function and with the detection and reporting of network related errors. Due to the nature of management of source addresses, network management also specifies initialization processes, requirements for reaction to brief power outages and minimum requirements for ECUs on the network
Truck Bus Control and Communications Network Committee
To assess the strength and durability for hydraulic brake components as a function of test conditions. These conditions may include: braking torque, hill-holding, braking forces, hydraulic pressure, brake temperatures, environmental and corrosion effects, vibration, and time. This RP includes a systematic reference to other test methods and provides new test methods for durability life prediction based on the VDA 311 for operating strength for brake calipers. When using AK load collectives from vehicle testing for life prediction, the nominal vehicle life corresponds to 300000 km. Braking torques and forces take into account inputs from non-ABS, ABS, EPB, and ESC systems. It also applies to gasoline, diesel, hybrid, and electric vehicles. This RP applies to vehicles below 4540 kg of GVWR. With the appropriate engineering review and assessment for a given test program, this RP can apply (or be used) to scale the duty cycle (or special collective) to reflect regional, on-road special
Hydraulic Brake Components Standards Committee
This SAE Aerospace Information Report (AIR) provides a methodology for performing a statistical assessment of gas-turbine-engine stability-margin usage. Consideration is given to vehicle usage, fleet size, and environment to provide insight into the probability of encountering an in-service engine stall event. Current industry practices, such as ARP1420, supplemented by AIR1419, and engine thermodynamic models, are used to determine and quantify the contribution of individual stability threats. The statistical technique adopted by the S-16 committee for performing a statistical stability assessment is the Monte Carlo method (see Applicable References 1 and 2). While other techniques may be suitable, their application is beyond the scope of this document. The intent of the document is to present a methodology and process to construct a statistical-stability-assessment model for use on a specific system and its mission or application
S-16 Turbine Engine Inlet Flow Distortion Committee
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines, and particularly for those who might be interested in investigating steady-state performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of numerical modeling and simulation. It is not the intent of this standard to provide specific test cell design recommendations, which are covered in the reference documentation
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Information Report has been prepared at the request of the SAE Road Vehicle Aerodynamics Forum Committee (RVAC), incorporating material from earlier revisions of the document first prepared by the Standards Committee on Cooling Flow Measurement (CFM). Although a great deal is already known about engine cooling, recent concern with fuel conservation has resulted in generally smaller air intakes whose shape and location are dictated primarily by low vehicle drag/high forward speed requirements. The new vehicle intake configurations make it more difficult to achieve adequate cooling under all conditions. They cause cooling flow velocity profiles to become distorted and underhood temperatures to be excessively high. Such problems make it necessary to achieve much better accuracy in measuring cooling flows. As the following descriptions show, each company or institution concerned with this problem has invested a lot of time and as a result gained considerable experience in
Road Vehicle Aerodynamics Forum Committee
This document is written to address acceleration and deceleration control issues related to heavy-duty trucks and buses greater than 10000 GVW
Truck and Bus Brake Systems Committee
Items per page:
1 – 50 of 208725