A highly corrosion resistant drawn cup type evaporator was developed. During the development of this evaporator, the corrosion characteristics of evaporators in the field were examined in detail. Profound understanding of the corrosion mechanism led to the development of a new, unique, corrosion test method which simulates the actual evaporator field service environment.
The main factors involved in increasing the corrosion resistance of the brazing sheet are (1) reduction of iron and silicon content in the core alloy and, (2) addition of titanium to the core alloy. In the present alloy, titanium content varies lamellarly through the thickness of the core alloy. Regions of high titanium content have a more cathodic potential, thus causing corrosion to proceed along the low titanium content lamellae. Consequently, the reduced iron and silicon contents, and the titanium addition, have the net effect of reducing the pitting corrosion rate.
Drawn cup type evaporators fabricated from the new alloy exhibited corrosion lives twice that of evaporators fabricated from a conventional alloy when tested under severe environmental conditions.