Fabrication of an Integrated Photonic Waveguide Joint in Micromachined Silicon

  • Magazine Article
  • TBMG-24255
Published April 01, 2016 by Tech Briefs Media Group in United States
Language:
  • English

High-aspect-ratio silicon structures are necessary components in many MEMS (microelectromechanical systems). Aspect ratio is defined as the ratio of the height of the structure to its lateral width. The structures are typically fabricated through bulk micromachining steps such as deep reactive ion etching. In some cases, multiple levels of high-aspect-ratio structures are required. For instance, one may want to etch completely through a silicon wafer to thermally isolate a bolometer or provide waveguide coupling to an antenna defined on an insulating membrane, and at the same time have integrated high-topology structures required for microwave coupling or filtering. Definition of the structures typically uses photolithographic technology. But for high-aspect-ratio structures, spin cast resist becomes difficult to incorporate due to the non-uniform thickness of the resist around tall structures. One can cast very thick layers of photoresist, but this limits the minimum feature size, and additionally, very thick layers of photoresist are difficult to work with due to solvent release and moisture that can cause the resist to crack or swell. For electromagnetic reasons, the structures would preferably be made from conductive material such as metal or degeneratively doped silicon. The objective of this work was to incorporate multiple levels of conductive high-aspectratio structures with standard micromachining processes.