Fuel Cells for Transportation

This is a three-day course which provides a comprehensive and up to date introduction to fuel cells for use in automotive engineering applications. It is intended for engineers and particularly engineering managers who want to jump‐start their understanding of this emerging technology and to enable them to engage in its development. Following a brief description of fuel cells and how they work, how they integrate and add value, and how hydrogen is produced, stored and distributed, the course will provide the status of the technology from fundamentals through to practical implementation.

Day 1 will have a brief introduction to fuel cells and then go through fundamentals of fuel cells: the thermodynamic principles involving the electrochemical potential, the kinetics of electrode reactions, principles of electrocatalysis, and electrochemical methods of characterization. Included will be the set of governing equations that define the physical processes involved in single cells.

Day 2 will focus on fuel cells stacks incorporating polymer electrolyte membranes (PEMFCs). It discusses the functional aspects of the stack key components, including the membrane, porous electrodes, gas diffusion media, current collectors and water and thermal management. It also points to the key design requirements affecting performance, cost and reliability, as well as the methods and costs of manufacturing.

Day 3 will focus on those aspects which relate to the use of fuel cells in systems specifically designed for transportation and discusses typical system architectures, performance requirements, critical parameters and specifications, and system controls. Reference is made to the most recent implementations and advances in the industry, including efforts by Toyota, Hyundai and SAIC. Issues relating to achieving technical readiness are described, and ample references are given to enable the participant for follow-up after the course.

What Will You Learn

By attending this course, you will be able to:
  • Identify the concepts and terminology of fuel cells in automotive applications
  • Describe the key components of fuel cells stacks
  • Explain the key design requirements that affect cost and reliability.
  • Explain the major failure modes limiting performance and reliability.
  • Design and develop fuel cells in systems specifically intended for transportations
  • Follow the development of this subject in the open literature with ample references and examples

Is This Course For You

This course is intended for engineers and particularly engineering managers who want to jump‐start their understanding of this emerging technology and to enable them to engage in its development.

Materials Provided

This data is not available at this time

Course Requirements

This data is not available at this time

Topics

This data is not available at this time