This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Dynamic Modeling of Aerospace Systems (DyMAS)
- Aerospace Standard
- ARP6538
- Issued
Downloadable datasets available
Annotation ability available
Sector:
Issuing Committee:
Language:
English
Scope
The objective of this document is to provide a recommended practice for the development of aerospace EPS dynamic models so that models developed by different companies/industries/governments/etc. will have a basic level of compatibility and interconnectivity. This will be crucial as the aerospace industry looks to solve the challenges of the 21st century through integrated vehicle optimization.
This document focuses on model interfaces and their interconnection. Other than these boundary characteristics, this document does not attempt to describe or regulate the inner workings of individual component models.
AIR6326 defines the four-level paradigm for aircraft EPS MSAT studies. Of the four levels, Device Physical, Behavioral, Functional, and Architectural, only the first three are dynamic models. Further, the Device Physical level is too detailed and not intended to be interconnected to other EPS models. Thus, only the middle two levels – Behavioral and Functional – will be covered by this document. Real-time models are a fast subset contained within these two levels, and these will be addressed here as well.
Functional models capture EPS component performance over an entire flight or long portions of the flight. These models might include behavior of ground preparations, startup/warm up, taxi, takeoff/climb, cruise, and descent, for example. These models require lower fidelity than behavioral ones, and are intended to address overall system-level considerations. Real-time models are a subset of functional models that are typically used in hardware-in-the-loop (HIL) studies to establish relevant boundary conditions for hardware under test. They are dynamic models that must be as fast as or faster than real time at every time step; practically, this restricts real-time models to the functional level, although future increases in computational speed may one day make it possible to create real-time-capable behavioral models.
Behavioral models capture EPS component performance within considerably shorter time periods than functional models. They are generally used to investigate short-term (i.e., microsecond scale) transient behavior. Thus, they must simulate physical phenomena at much higher bandwidth (i.e., higher frequencies) than functional models. Consequently, they require a high level of fidelity and run much more slowly than functional models.
Since every model development team has its own set of goals, processes, and legacy codes, it is perhaps inappropriate and certainly infeasible to impose hard requirements for all models. Thus, rather than define a rigid framework that must be followed, this document provides a structured set of guidelines that, if followed, lay a foundation for the successful interconnection and integration of numerous disparate models.
Rationale
This document provides guidelines and suggested best practices for dynamic modeling of aerospace systems. Because, ostensibly, there are as many modeling methods as there are members of the aerospace community, this ARP attempts to provide a framework for standardized modeling practices that will facilitate fast, efficient, and more effective integration of models from numerous sources. The document begins with general guidelines applicable to models spanning all aerospace domains, and then gives focused examples for component models of aerospace electric power systems (EPS). The EPS component model guidelines are given in general terms, and can be easily translated into guidelines for models of other systems (e.g., thermal management, aerodynamic, actuation).
Recommended Content
Aerospace Standard | Aircraft Electrical Power Systems Modeling and Simulation Definitions |
Technical Paper | Design and Integration of DC Power System with Regulated Transformer Rectifiers |
Topic
Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Table 1 | Main ES/G signals and recommended units | |
Table 2 | Exciter signals and recommended units | |
Table 3 | ICC signals and recommended units | |
Table 4 | ES/G controller model states | |
Table 5 | ES/G controller signals and recommended units | |
Table 6 | EDU signals and recommended units | |
Table 7 | ESD signals and recommended units | |
Table 8 | BCCU model control states | |
Table 9 | BCCU signals and recommended units | |
Table 10 | EAU model control states | |
Table 11 | EAU signals and recommended units | |
Table 12 | DC-DC voltage regulator signals and recommended units | |
Table 13 | DC-AC inverter signals and recommended units | |
Table 14 | PMG signals and recommended units | |
Table 15 | AC-DC C/R signals and recommended units | |
Table 16 | System loads signals and recommended units | |
Table 17 | Sensors signals and recommended units |
Issuing Committee
AE-7M Aerospace Model Based Engineering
The Aerospace Systems Model-Based Engineering committee AE-7M provides a forum for gathering and disseminating technical information between the users and suppliers of aerospace systems regarding modeling, simulation, analyses, optimization, verification, and validation processes.
Reference
Number | Title |
---|
* Redlines comparisons are available for those standards
listed in the Revision History that contain a radio button. A
redline comparison of the current version against a revision is
accomplished by selecting the radio button next to the standard and
then selecting 'compare'. At this time, Redline versions only exist
for some AMS standards. SAE will continue to add redline versioning
with ongoing updates to SAE MOBILUS.