This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Flange - Thermocouple
- Aerospace Standard
- ARP465B
- Reaffirmed
Sector:
Issuing Committee:
Language:
English
Scope
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design of flanges on temperature sensors intended for use in gas turbine engines. Three figures detail the configuration of standard size flange mounts with bolt holes, slotted flanges, and miniaturized flanges for small probes.
Rationale
ARP465B has been reaffirmed to comply with the SAE five-year review policy.
Data Sets - Support Documents
No Datasets Available
Issuing Committee
E-32 Aerospace Propulsion Systems Health Management
Background
Engine condition monitoring and rotorcraft HUMS(Health and Usage Monitoring Systems)can be used as a tool to track and restore engine performance, improve problem diagnosis, suggest solutions, promote better commercial and military aircraft operation, minimize in-flight failures, and reduce costs of engine maintenance. Because of these and other continuing objectives, the need for consolidated action by a group of experts to promote engine monitoring and rotorcraft conditio monitoring know-how and standards was identified. It was deemed appropriate by the SAE Propulsion Division to assign this task to a special committee designated as Committee E-32. The committee has existed for over 20 years and has 50 active members. Purpose / Charter Serves as a forum to gather, record, and publish expert information in the discipline of aircraft and helicopter engine condition monitoring and rotorcraft HUMS. The committee gathers and analyzes requirements for propulsion system monitoring for the various types of aircraft gas turbines and rotorcraft HUMS and develop standards and recommendations for the adoption of engine monitoring devices that affect the operation of gas turbine engines and rotorcraft. Objectives Identify potential engine and rotorcraft HUMS parameters suitable for sensing (pressure, temperature, etc.), and considerations involved in selecting parameters (potential problems, accuracy, cost, etc.). Analyze the various approaches to engine monitoring (e.g. airborne vibration monitoring systems and ground software interfaces, etc.) and establish criteria for the most cost-effective systems. Develop as appropriate, standards on engine and rotorcraft HUMS monitoring equipment and techniques, e.g. configuration of engine fittings for sensor connections, types of sensors, identification of signals which should be let to common diagnostic connectors, etc. Develop new requirements and uses for engine and rotorcraft HUS monitoring to promote cost-effective operation of aircraft. Sponsor technical conferences related to monitoring of air breathing engines and rotorcraft HUMS.Reference
Number | Title |
---|