This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Guide to Engine Lubrication System Monitoring
- Aerospace Standard
- AIR1828C
- Revised
Downloadable datasets available
Annotation ability available
Sector:
Issuing Committee:
Language:
English
Scope
This SAE Aerospace Information Report (AIR) provides information and guidance for the selection and use of technologies and methods for lubrication system monitoring of gas turbine aircraft engines. This AIR describes technologies and methods covering oil system performance monitoring, oil debris monitoring, and oil condition monitoring. Both on-aircraft and off-aircraft applications are presented. A higher-level view of lubrication system monitoring as part of an overall engine monitoring system (EMS), is discussed in ARP1587.
The scope of this document is limited to those lubrication system monitoring, inspection and analysis methods and devices that can be considered appropriate for health monitoring and routine maintenance.
This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard.
Rationale
This SAE Aerospace Information Report (AIR) was developed to provide information and guidance for the selection and use of technologies and methods for lubrication system monitoring of gas turbine aircraft engines. Benefits of effective engine lubrication system monitoring include increased reliability, reduced cost of ownership, improved product assurance, and enhanced safety of the equipment. The guidance within this report will support developers, operators, and maintainers to improve the effectiveness of lubrication system monitoring in existing and future applications. This edition updates content, formatting, and incorporates new content on oil quality monitoring and off-aircraft oil debris monitoring.
Recommended Content
Aerospace Standard | Prognostics for Gas Turbine Engines |
Aerospace Standard | Guide to Life Usage Monitoring and Parts Management for Aircraft Gas Turbine Engines |
Topic
Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Table 1 | Typical dimensions relevant to debris monitoring | |
Table 2 | Common elements measured by SOA |
Issuing Committee
E-32 Aerospace Propulsion Systems Health Management
Background
Engine condition monitoring and rotorcraft HUMS(Health and Usage Monitoring Systems)can be used as a tool to track and restore engine performance, improve problem diagnosis, suggest solutions, promote better commercial and military aircraft operation, minimize in-flight failures, and reduce costs of engine maintenance. Because of these and other continuing objectives, the need for consolidated action by a group of experts to promote engine monitoring and rotorcraft condition monitoring know-how and standards was identified. It was deemed appropriate by the SAE Propulsion Division to assign this task to a special committee designated as Committee E-32. The committee has existed for over 40 years and has 26 active members. Purpose / Charter E-32 Committee serves as a forum to gather, record, and publish expert information in the discipline of aerospace propulsion system health management. The Committee gathers and analyzes requirements for propulsion system health management for the various types of air vehicle propulsion systems and develops standards and recommendations for the adoption of aerospace propulsion system health management devices that affect the operation of propulsion systems. Objectives Identifies potential propulsion system parameters suitable for sensing (pressure, temperature, vibration, etc.) and considerations involved in selecting parameters (potential problems, accuracy, cost, etc.), Analyzes the various approaches to aerospace propulsion system health management (e.g., airborne vibration health management systems, fault prediction capabilities, ground software interfaces, etc.) and establishes criteria for cost effective systems, and guidance regarding best practices for designing propulsion health management systems, Develops appropriate standards for aerospace propulsion system health management equipment and techniques; e.g., types of sensors, identification of signals which should be led to common diagnostic connectors, etc., Develops new requirements and uses for aerospace propulsion system health management to promote sustainable and cost effective operation of air vehicles, and Hosts technical conferences related to health management of propulsion systems. Provide a means to gain regulatory approval for utilizing EHM data in a range of maintenance activities.Reference
Number | Title |
---|---|
720303 | Spectrometric Oil Analysis - Use and Interpretation of Data |
ARP1587 | AIRCRAFT GAS TURBINE ENGINE MONITORING SYSTEM GUIDE |
ASME Paper No. 78-Lub-34 | This document is not part of the subscrption. |
ASME Paper No. 81-GT-60 | This document is not part of the subscrption. |
ASME Paper No. 81-Lub-35 | This document is not part of the subscrption. |
ASME Paper No. 82-GT-79 | This document is not part of the subscrption. |
NBSIR 73-252 | This document is not part of the subscrption. |
* Redlines comparisons are available for those standards
listed in the Revision History that contain a radio button. A
redline comparison of the current version against a revision is
accomplished by selecting the radio button next to the standard and
then selecting 'compare'. At this time, Redline versions only exist
for some AMS standards. SAE will continue to add redline versioning
with ongoing updates to SAE MOBILUS.