This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Before and After Study of the Change to Unleaded Gasoline-Test Results from EPA and Other Cycles
Annotation ability available
Sector:
Language:
English
Abstract
A fleet of 50, 1986-1987 model year cars designed for unleaded gasoline has been tested on the road and on a chassis dynamometer over 5 driving cycles and a wide range of other manoeuvres including steady speeds. It was found that the fuel consumption of this fleet was 17 to 23% (depending on test cycle) less than that of a corresponding fleet to leaded fuelled cars of 1980 model year average. Exhaust emissions were significantly lowered in the range of 45 to 93%. However trend line analysis of the several data sets indicates that the ULG fleet has about 6% higher fuel consumption than would have been expected if there had been a continuing evolution of leaded vehicle technology. The data base produced has applicability to a wide range of planning and design tasks, and those illustrated indicate the effects of speed limit changes and advisory speed signs on fuel consumption and emissions.
THE REDUCTION in fuel use by the Australian vehicle fleet brought about by the fuel consumption goals (similar to the CAFE in the U.S.) and the parity pricing of indigenous oil with Saudi Arabian light crude have been the major contributors in causing a significant change in the demand for crude oil. The growth rate in the demand has fallen from 4% per annum in 1978 to almost zero in 1985 and now is projected to run at 1% for the next few years. This turnaround in demand together with increased oil production led to Australia becoming an exporter of crude and, for a short time, to be self sufficient, although in general a net importer.
The ‘fuel consumption goals’ was a voluntary government-industry code set in terms of the U.S. practice of a 55:45 weighting of the EPA city:highway test cycles that called for a reduction of 20% in the national new-vehicle, average fleet fuel consumption (NAFC) from the 1978 value of 11.3 L/100 km by 1983 and the target of 30% (8 L/100 km) for 1987. In the event only a 16.5% reduction was achieved by 1983 to 9.4 L/100 km and the target for 1987 was re-negotiated to 8.5 L/100 km because of the change in exhaust emission standards from Australian Design Rule (ADR) 27A (U.S. 1973 standards) to ADR 37 (U.S. 1975 standards) in 1986 and the consequential change to unleaded gasoline (ULG) of 91-93 RON. As in the U.S. the resurgence in demand for slightly larger or more luxurious (heavier) cars is making substantial improvements in fuel use more difficult to achieve. Even by 1988 the NAFC had only been reduced to 9.1 L/100 km.
In common with U.S. experience drivers have reported (1)* that most often the fuel use achieved by their cars is worse than that published in the Federal Government's booklet called the Fuel Consumption Guide. Yet small errors in the projection of the growth or decline in the demand for gasoline can have a significant effect on national planning for fuel resources because over half the crude consumed is used as transport fuel. The change from a 4% growth (implying a doubling in demand in 18 years) to the near plateau in national oil demand, just identified, has contributed to the gloomy projections of the late 70's, of only 40% self sufficiency by the turn of the century being converted into the view of three year's ago of 80 to 90% self sufficiency. However, the fall in the price of oil to around $17 a barrel makes that projection look optimistic and self sufficiency at year 2000 may fall to about 50%.
Clearly, therefore, it is important to understand how the changes is vehicle fuel demand measured according to present practice will be realised in real world driving. Furthermore, through Department of Primary Industry and Energy programs there are strong efforts to reduce fuel demand by changing driving patterns through traffic engineering including road alterations and computer control of signals, which minimise stops as well as improving travel time. These actions have been proven to reduce fuel demand by 13% on a road network basis and by 20% along individual roads (2,3).
Recommended Content
Technical Paper | Study on Air Assist Fuel Injector Atomization and Effects on Exhaust Emission Reduction |
Technical Paper | Study of Future Engine Oil (First Report): Future Engine Oil Scenario |
Authors
Topic
Citation
Watson, H., Milkins, E., Lansell, S., and Challenger, K., "A Before and After Study of the Change to Unleaded Gasoline-Test Results from EPA and Other Cycles," SAE Technical Paper 900150, 1990, https://doi.org/10.4271/900150.Also In
References
- WATSON H.C. MILKINS E.E. The effects of operating conditions on vehicle fuel consumption and emissions SAE paper 852230 1985
- LUK J.Y.K. SIMS A.G. LOWNIE P.R. The Parramatta experiment - evaluating four methods of area traffic control Australian Road Research Board, Research Report AIR 132 1983
- NEGUS B. FEHON D. SMELDT J. Fuel usage evaluation of linked signal systems SAE-A and ARRB Second Traffic Energy and Emissions Conference, paper 82159 1982
- WATSON H.C. MILKINS E.E. PRESTON M.O. CHITTLEBOROUGH C. ALIMORADIAN B. Predicting fuel consumption and emissions - transferring chassis dynamometer results to real driving conditions SAE paper 830435 1983
- WATSON H.C. MILKINS E.E. BRAUNSTEINS J. Development of the Melbourne Peak Driving Cycle SAE-A and ARRB Second Traffic Energy and Emissions Conference, paper 82148 1982
- KRUSE R.E. HULS T.A. Development of the federal urban driving cycle SAE paper 730553 1973
- JOHNSON T.M. FORMENTI D.L. GRAY R.F. PETERSON W.C. Measurement of vehicle operation pertinent to fuel economy SAE paper 750553 1975
- LANSELL S.R. WATSON H.C. MILKINS E.E. Development of a Melbourne cold-start driving cycle Department of Mech. and Ind. Engineering, University of Melbourne 1983
- WATSON H.C. PRESTON M.O. BEARDSLEY P. Establishing a vehicle's on-road steady speed performance on a non-level road Department of Mech. and Ind. Engineering, University of Melbourne 1983
- AUSTRALIAN TRANSPORT ADVISORY COMMITTEE, COMMITTEE ON MOTOR VEHICLE EMISSIONS (COMVE) Development of a long term national motor vehicle emission strategy Australian Department of Transport Canberra February 1981
- PRESTON M.O Development of manual gear box shift points for the Melbourne peak cycle Department of Mech. and Ind. Engineering, University of Melbourne 1983
- WIERS W.W. HOSTETTER T.D. Techniques of measurement, variation of effects of vehicle friction losses measured on electric dynamometers SAE paper 830436 1983
- McFARLANE I. CASS M.R. Comparison of ADR 37 and ADR 27A fuel consumption and emissions results SAE-Aust., SEPAC seminar Energy and the Society, paper 84002 1984
- MILKINS E.E. WATSON H.C. Comparison of urban driving patterns 2nd International Pacific Conference, paper 83 1983
- U.S. ENVIRONMENTAL PROTECTION AGENCY Mobile Source Emission Factors 1978
- WATSON H.C. MILKINS E.E. MARSHALL G. A simplified method for quantifying fuel consumption of vehicles in urban traffic SAE-Aust. 40 1 6 13 1980
- MURRELL J.D. LOOS S. HEAVENRICH R. CHENG J. LE BARON E. Light duty automotive fuel economy…trends thru 1983 SAE paper 830544 1983
- KULP D.L. McKENNA J.C. Fuel economy ratings vs. road experience - an analysis of Ford's 1982 lease fleet SAE paper 831034 1983
- WATSON H.C. HOLYOAKE P. KUMAR S. KHATIB E.T. An evaluation of models for predicting traffic emissions Australian Road Transport Forum (ARRB) 1985
- WATSON H.C. HOLYOAKE P.A. The effect of cold starting on a vehicle's fuel consumption and component temperatures 1st I.A.V.D. Congress Geneva 1984
- WASIELEWSKI P. EVANS L. CHANG M.F. Automobile braking energy, acceleration and speed in city traffic SAE paper 800795 1980
- SOCIETY OF AUTOMOTIVE ENGINEERS-AUSTRALASIA A survey of in-service petrol consumption of passenger vehicles in Australia August 1986
- SHEIKH I.M. Single equation models for predicting hot and cold start fuel consumption and exhaust emissions of cars Department of Mechanical and Manufacturing Engineering, University of Melbourne 1988
- AKCELIK R. SAE-A/ARRB Conference “Can traffic management reduce vehicle fuel consumption and emissions and affect vehicle design requirements” 1980
- BOWYER D.B. AKCELIK R. BIGGS D.C. Guide to fuel consumption analyses for traffic management ARRB Internal Report AIR 390-9 1984
- BOWYER D.B. AKCELIK R. BIGGS D.C. An audit of energy saving from traffic management ARRB Internal Report AIR 390-1 1982
- HOLYOAKE P. Analysis of simple models for fuel consumption and emissions Department of Mechanical and Manufacturing Engineering, University of Melbourne 1985
- WATSON H.C. Sensitivity of fuel consumption and emissions to driving patterns and vehicle design SAE-A/ARRB Conference “Can traffic management reduce vehicle fuel consumption and emissions and affect vehicle design requirements” 1980
- KENT J.H. POST K. TOMLIN J.A. Fuel consumption and emission modelling in traffic links SAE-A and ARRB Second Traffic Energy and Emissions Conference 1982
- MOWLE M. May 1988
- Wooldridge, M.J. Trayford, R.S. Doughty, B.W. The urban drive cycle benefits of advisory speed signs International Pacific Conference 3 on Automotive Engineering SAE 1985
- Watson. H. C. A survey of the in-use unleaded petrol passenger car fleet Final report to NERDDC Department of Mechanical and Manufacturing Engineering, University of Melbourne 1988