This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine
Technical Paper
2022-32-0027
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
The concept of hot surface assisted compression ignition (HSACI) was previously shown to allow for control of combustion timing and to enable combustion beyond the limits of pure homogeneous charge compression ignition (HCCI) combustion. This work investigates the potential of HSACI to extend the operating limits of a naturally aspirated single-cylinder natural gas fueled HCCI engine.
A zero-dimensional (0D) thermo-kinetic modeling framework was set up and coupled with the chemical reaction mechanism AramcoMech 1.3. The results of the 0D study show that reasonable ignition timings in the range 0-12°CA after top dead center (TDC) in HCCI can be expressed by constant volume ignition delays at TDC conditions of 9-15°CA. Simulations featuring the two-stage combustion in HSACI point out the capability of the initial heat release as a means to shorten bulk-gas ignition delay.
Engine trials were conducted to map the operating limits in HCCI and HSACI mode for an engine speed of 1400 1/min as a function of intake air temperature (148-173°C) and relative air-fuel ratio (λ = 2.0-3.0). Results show that HSACI extends the lean limit by more than ∆λ = 0.4 and reduces the minimum required intake temperature by at least 5 K compared to HCCI. Comparative experiments of HCCI and HSACI reveal that HSACI benefits from higher engine load, lower ringing intensity and lower NOx emissions without deteriorating efficiency. Experimental data concerning the occurrence of instable combustion in HCCI and the role of initial heat release in HSACI agree with the trends predicted by the 0D models.
Authors
Topic
Citation
Alexander Judith, J., Kettner, M., Schwarz, D., Klaissle, M. et al., "Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine," SAE Technical Paper 2022-32-0027, 2022, https://doi.org/10.4271/2022-32-0027.Also In
References
- Najt , P. and Foster , D.E. Compression-Ignited Homogeneous Charge Combustion 830264. SAE 1983
- Christensen , M. , Johansson , B. , and Einewall , P. Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition Operation 972874. SAE Technical Paper 1997
- Dec , J.E. Advanced compression-ignition engines— understanding the in-cylinder processes Proceedings of the Combustion Institute 32 2 2727 2742 2009 10.1016/j.proci.2008.08.008
- Manofsky , L. , Vavra , J. , Assanis , D.N. , and Babajimopoulos , A. Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition: 2011-01-1179 SAE International 2011 10.4271/2011-01-1179
- Wang , Z. , Wang , J. , Shuai , S. , He , X. et al. Research on Spark Induced Compression Ignition SICI: 2009-01-0132 SAE Technical Paper 2009
- Zigler , B.T. , Keros , P.E. , Helleberg , K.B. , Fatouraie , M. et al. An experimental investigation of the sensitivity of the ignition and combustion properties of a single-cylinder research engine to spark-assisted HCCI International Journal of Engine Research 12 4 353 375 2011 10.1177/1468087411401286
- Urushihara , T. , Yamaguchu , K. , Yoshizawa , K. , and Itoh , T. A Study of a Gasoline-fueled Compression Ignition Engine - Expansion of HCCI Operation Range Using SI Combustion as a Trigger of Compression Ignition 2005-01-0180 SAE Technical Paper 2005
- Persson , H. , Hultqvist , A. , and Johansson , B. Investigation of the Early Flame Development in Spark Assisted HCCI Combustion Using High Speed Chemiluminescence Imaging: 2007-01-0212 SAE Technical Paper 2007
- Lavoie , G.A. , Martz , J. , Wooldridge , M. , and Assanis , D. A multi-mode combustion diagram for spark assisted compression ignition Combustion and Flame 157 6 1106 1110 2010 10.1016/j.combustflame.2010.02.009
- Middleton , R.J. , Martz , J.B. , Lavoie , G.A. , Babajimopoulos , A. et al. A computational study and correlation of premixed isooctane air laminar reaction fronts diluted with EGR Combustion and Flame 159 10 3146 3157 2012 10.1016/j.combustflame.2012.04.014
- Olesky , L.M. , Lavoie , G.A. , Assanis , D.N. , Wooldridge , M.S. et al. The effects of diluent composition on the rates of HCCI and spark assisted compression ignition combustion Applied Energy 124 3 186 198 2014 10.1016/j.apenergy.2014.03.015
- Olesky , L.M. , Martz , J.B. , Lavoie , G.A. , Vavra , J. et al. The effects of spark timing, unburned gas temperature, and negative valve overlap on the rates of stoichiometric spark assisted compression ignition combustion Applied Energy 105 5 407 417 2013 10.1016/j.apenergy.2013.01.038
- Olesky , L.K.M. , Middleton , R.J. , Lavoie , G.A. , Wooldridge , M.S. et al. On the sensitivity of low temperature combustion to spark assist near flame limit conditions Fuel 158 5 11 22 2015 10.1016/j.fuel.2015.05.012
- Robertson , D. and Prucka , R. A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies 2019-24-0027, SAE Technical Paper Series 2019
- Judith , J.A. , Kettner , M. , Koch , T. , Schwarz , D. et al., Experimental study on controlled hot surface assisted compression ignition (HSACI) in a naturally aspirated single cylinder gas engine International Journal of Engine Research 103 2022 10.1177/14680874211073413
- Scholl , F. 2017
- Yao , C. , Zhou , T. , Yang , F. , Hu , Y. et al. Experimental study of glow plug assisted compression ignition Fuel 197 2 111 120 2017 10.1016/j.fuel.2017.02.008
- Borgqvist , P. , Andersson , Ö. , Tunestal , P. , and Johansson , B. The Low Load Limit of Gasoline Partially Premixed Combustion Using Negative Valve Overlap J. Eng. Gas Turbines Power 2013
- Kuzuyama , H. , Machida , M. , Akihama , K. , Inagaki , K. et al. A Study on Natural Gas Fueled Homogeneous Charge Compression Ignition Engine - Expanding the Operating Range and Combustion Mode Switching 2007-01-0176. SAE Technical Paper 2007
- Lawler , B. , Lacey , J. , Güralp , O. , Najt , P. et al. HCCI combustion with an actively controlled glow plug: The effects on heat release, thermal stratification, efficiency, and emissions Applied Energy (211 809 819 2018
- Pourfallah , M. , Armin , M. , and Ranjbar , A.A. A numerical study on the effect of thermal and charge stratification on the HCCI natural gas engine International Journal of Ambient Energy 1 10 2019 10.1080/01430750.2019.1608860
- Judith , J.A. , Kettner , M. , Schwarz , D. , Klaissle , M. et al. Submitted: Experimental study on spark assisted and hot surface assisted compression ignition (SACI, HSACI) in a naturally aspirated single-cylinder gas engine Proceedings of the ASME 2022 Internal Combustion Engine Division Fall Technical Conference ICEF 2022
- David G. Goodwin , Harry K. Moffat , Ingmar Schoegl , Raymond L. Speth , and Bryan W. Weber 10.5281/zenodo.6387882 https://www.cantera.org
- Metcalfe , W.K. , Burke , S.M. , Ahmed , S.S. , and Curran , H.J. A Hierarchical and Comparative Kinetic Modeling Study of C1−C2 Hydrocarbon and Oxygenated Fuels Int. J. Chem. Kinet. 45 10 638 675 2013 10.1002/kin.20802
- Judith , J.A. , Kettner , M. , and Koch , T. A Benchmark Study of Chemical Reaction Mechanisms for Ignition Delay Calculation of Natural Gas/Hydrogen Mixtures under Internal Combustion Engine Conditions Reports on Energy Efficient Mobility 2021 10.5281/zenodo.6373381
- Kee , R.J. , Coltrin , M.E. , Glarborg , P. , and Zhu , H. Chemically reacting flow: Theory, modeling and simulation Wiley 2018
- Babajimopoulos , A. , Lavoie , G.A. , and Assanis , D.N. On the role of top dead center conditions in the combustion phasing of homogeneous charge compression ignition engines Combustion Science and Technology 179 9 2039 2063 2007 10.1080/00102200701386107
- Silvis , W.M. An Algorithm for Calculating the Air/Fuel Ratio from Exhaust Emissions 970514. SAE Technical Paper 1997 10.4271/970514
- Heywood , J. Internal Combustion Engine Fundamentals McGraw-Hill 0-07-028637-X 1988
- Satopaa , V. , Albrecht , J. , Irwin , D. , and Raghavan , B. Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior International Conference on Distributed Computing Systems Workshops 166 171 2011
- Soyhan , H.S. , Yasar , H. , Walmsley , H. , Head , B. et al. Evaluation of heat transfer correlations for HCCI engine modeling Applied Thermal Engineering 29 2-3 541 549 2009 10.1016/j.applthermaleng.2008.03.014
- Hohenberg , G. 1980
- List , H. Thermodynamik der Verbrennungskraftmaschine: Der Fahrzeugantrieb 3rd ed Springer Wien 978-3211-99276-0 2009
- Neurohr , M. 2018
- Eng , J. Effect of Pressure Waves in HCCI Combustion 2002-01-2859. SAE Technical Paper 2002
- Middleton , R.J. , Olesky , L.K.M. , Lavoie , G.A. , Wooldridge , M.S. et al. The effect of spark timing and negative valve overlap on Spark Assisted Compression Ignition combustion heat release rate Proceedings of the Combustion Institute 35 3 3117 3124 2015 10.1016/j.proci.2014.08.021
- Olsson , J.-O. , Tunestal , P. , Johansson , B. , Fiveland , S. et al. Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine 2002-01-0111. SAE 2002
- Bargende , M. , Spicher , U. , Köhler , U. , and Schwarz , F. Entwicklung eines allgemeingültigen Restgasmodells für Verbrennungsmotoren FVV-Informationstagung Motoren 2002