This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Towards Next Generation Control-Oriented Thermo-Kinetic Model for Reactivity Controlled Compression Ignition Marine Engines
Technical Paper
2022-01-1033
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
With low-temperature combustion engine research reaching an applicable level, physics-based control-oriented models regain attention. For reactivity controlled combustion concepts, chemical kinetics-based multizone models have been proven to reproduce the governing physics for performance-oriented simulations. They offer accuracy levels similar to high-fidelity computational fluid dynamics (CFD) models but with a fraction of their computational effort. Nevertheless, state-of-the-art reactivity controlled compression ignition (RCCI) simulations with multizone model toolchains still face challenges related to predictivity and calculation speed. This study introduces a new multizone modelling framework that addresses these challenges. It includes a C++ code, deeply integrated with open-source, thermo-kinetic libraries, and coupled to an industry standard 1-D modelling framework. Incorporating a predictive turbulence mixing model, it aims to eliminate dependence on CFD-based initialisation, while applying a novel zonal configuration to achieve sensitivity to the combustion chamber´s geometrical features. Basic sensitivity simulations performed for zonal resolution and chemical kinetic mechanisms prove the approach is fit for purpose. Aiming for optimal trade-off between accuracy and simulation speed, the 12-zone model has a simulation time below three minutes per closed cycle. These achievements are validated against a medium-speed, large-bore, single-cylinder research engine, running in a dual-fuel mode with natural gas and light fuel oil. Using basic submodels, the framework reproduces measured in-cylinder pressure trace within an RMS error of 0.85 bar, and combustion performance indicators within a 5% error margin target. Ultimately, this is the first time the multi-zone kinetic framework has been proven suitable to reproduce RCCI combustion on a state-of-the-art marine engine geometry.
Authors
Topic
Citation
Vasudev, A., Cafari, A., Axelsson, M., Mikulski, M. et al., "Towards Next Generation Control-Oriented Thermo-Kinetic Model for Reactivity Controlled Compression Ignition Marine Engines," SAE Technical Paper 2022-01-1033, 2022, https://doi.org/10.4271/2022-01-1033.Also In
References
- Reitz , R.D. and Duraisamy , G. Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines Prog. Energy Combust. Sci. 46 2015 12 71 10.1016/j.pecs.2014.05.003
- Dahodwala , M. , Joshi , S. , Koehler , E. , and Franke , M. Experimental and Computational Analysis of Diesel-Natural Gas RCCI Combustion in Heavy-Duty Engines SAE Technical Paper 2015-01-0849 2015 10.4271/2015-01-0849
- Benajes , J. , Pastor , J.V. , García , A. , and Monsalve-Serrano , J. The Potential of RCCI Concept to Meet EURO VI NOx Limitation and Ultra-Low Soot Emissions in a Heavy-Duty Engine Over the Whole Engine Map Fuel 159 2015 952 961 10.1016/j.fuel.2015.07.064
- García Valladolid , P. , Tunestål , P. , Monsalve-Serrano , J. , García , A. et al. Impact of Diesel Pilot Distribution on the Ignition Process of a Dual Fuel Medium Speed Marine Engine Energy Convers. Manag. 149 2017 192 205 10.1016/j.enconman.2017.07.023
- Xia , L. , Willems , R. , de Jager , B. , and Willems , F. Constrained Optimization of Fuel Efficiency for RCCI Engines 9th IFAC Symposium on Advances in Automotive Control AAC 2019 648 653 10.1016/j.ifacol.2019.09.103
- Mikulski , M. , Bekdemir , C. , and Willems , F. Experimental Validation of a Combustion Kinetics based Multi-Zone Model for Natural Gas-Diesel RCCI Engines Symposium for Combustion Control (SCC 2016) Aachen, Germany 2016 83 91
- Kahila , H. , Wehrfritz , A. , Kaario , O. , and Vuorinen , V. Large-Eddy Simulation of Dual-Fuel Ignition: Diesel Spray Injection into a Lean Methane-Air Mixture Combust. Flame 199 2019 131 151 10.1016/j.combustflame.2018.10.014
- Ahmad , Z. , Kaario , O. , Qiang , C. , Vuorinen , V. et al. A Parametric Investigation of Diesel/Methane Dual-Fuel Combustion Progression/Stages in a Heavy-Duty Optical Engine Appl. Energy 251 2019 113191 10.1016/j.apenergy.2019.04.187
- Mikulski , M. , Ramesh , S. , and Bekdemir , C. Reactivity Controlled Compression Ignition for Clean and Efficient Ship Propulsion Energy 182 2019 1173 1192 https://doi.org/10.1016/j.energy.2019.06.091
- Mikulski , M. , Balakrishnan , P.R. , and Hunicz , J. Natural Gas-Diesel Reactivity Controlled Compression Ignition with Negative Valve Overlap and In-Cylinder Fuel Reforming Appl. Energy 254 2019 113638 https://doi.org/10.1016/j.apenergy.2019.113638
- Doosje , E. , Willems , F. , and Baert , R. Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas SAE Technical Paper 2014-01-1318 2014 10.4271/2014-01-1318
- Paykani , A. , Garcia , A. , Shahbakhti , M. , Rahnama , P. et al. Reactivity Controlled Compression Ignition Engine: Pathways Towards Commercial Viability Applied Energy 282 2021 116174 10.1016/j.apenergy.2020.116174
- Egüz , U. , Maes , N.C.J. , Leermakers , C.A.J. , Somers , L.M.T. et al. Predicting Auto-Ignition Characteristics of RCCI Combustion using a Multi-Zone Model International Journal of Automotive Technology 14 5 2013 693 699 10.1007/s12239-013-0075-2
- Lashkarpour , S.M. , Khoshbakhti Saray , R. , and Najafi , M. Multi-Zone Model for Reactivity Controlled Compression Ignition Engine based on CFD Approach Energy 156 2018 213 228 10.1016/j.energy.2018.05.084
- Eichmeier , J.U. , Reitz , R.D. , and Rutland , C. A Zero-Dimensional Phenomenological Model for RCCI Combustion using Reaction Kinetics SAE Int. J. Engines 7 1 2014 106 119 10.4271/2014-01-1074
- Vasudev , A. , Mikulski , M. , Balakrishnan , P.R. , Storm , X. et al. Thermo-Kinetic Multi-Zone Modelling of Low Temperature Combustion Engines Prog. Energy Combust. Sci. 91 2022 100998 10.1016/j.pecs.2022.100998
- Kozarac , D. , Lulic , Z. , and Sagi , G. A Six-Zone Simulation Model for HCCI Engines with a Non-Segregated Solver of Zone State Null 14 3 2010 425 451 10.1080/13647830.2010.489959
- Komninos , N.P. and Rakopoulos , C.D. Heat Transfer in HCCI Phenomenological Simulation Models: A Review Appl. Energy 181 2016 179 209 10.1016/j.apenergy.2016.08.061
- Wilson , D. and Allen , C. Application of a Multi-Zone Model for the Prediction of Species Concentrations in Rapid Compression Machine Experiments Combust. Flame 171 2016 185 197 10.1016/j.combustflame.2016.05.018
- Guo , H. and Neill , W.S. The Effect of Hydrogen Addition on Combustion and Emission Characteristics of an N-Heptane Fuelled HCCI Engine Int. J. Hydrog. Energy 38 26 2013 11429 11437 10.1016/j.ijhydene.2013.06.084
- Neshat , E. and Asghari , M. Investigation on the Effect of Reformer Gas on Availability Terms and Waste Heat Recovery from Exhaust Gases of an HCCI Engine Considering Radiation Heat Transfer Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 1 2019 55 10.1007/s40430-019-2139-3
- Indrajuana , A. , Bekdemir , C. , Luo , X. , and Willems , F. Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion IFAC-PapersOnLine 49 11 2016 217 222 10.1016/j.ifacol.2016.08.033
- Nazoktabar , M. , Jazayeri , S.A. , Parsa , M. , Ganji , D.D. et al. Controlling the Optimal Combustion Phasing in an HCCI Engine based on Load Demand and Minimum Emissions Energy 182 2019 82 92 10.1016/j.energy.2019.06.012
- Mikulski , M. , Balakrishnan , P.R. , Doosje , E. , and Bekdemir , C. Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine SAE Technical Paper 2018-01-0254 2018 10.4271/2018-01-0254
- Narayanaswamy , K. and Rutland , C.J. Cycle Simulation Diesel HCCI Modeling Studies and Control SAE Technical Paper 2004-01-2997 2004 10.4271/2004-01-2997
- Ekberg , K. , Leek , V. , and Eriksson , L. Validation of an Open-Source Mean-Value Heavy-Duty Diesel Engine Model Proceedings of The 59th Conference on Simulation and Modelling 2018 978-91-7685-494-5 290 296 10.3384/ecp18153290
- Wahlström , J. and Eriksson , L. Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 225 7 2011 960 986 10.1177/0954407011398177
- 2019
- Bougrine , S. , Richard , S. , Michel , J.-B. , and Veynante , D. Simulation of CO and NO Emissions in a SI Engine using a 0D Coherent Flame Model Coupled with a Tabulated Chemistry Approach Appl. Energy 113 2014 1199 1215 10.1016/j.apenergy.2013.08.038
- Matrisciano , A. , Franken , T. , Gonzales Mestre , L.C. , Borg , A. et al. Development of a Computationally Efficient Tabulated Chemistry Solver for Internal Combustion Engine Optimization Using Stochastic Reactor Models Appl. Energy 10 24 2020 10.3390/app10248979
- Bissoli , M. , Frassoldati , A. , Cuoci , A. , Ranzi , E. et al. A New Predictive Multi-Zone Model for HCCI Engine Combustion Appl. Energy 178 2016 826 843 10.1016/j.apenergy.2016.06.062
- McNenly , M.J. , Havstad , M.A. , Aceves , S.M. , and Pitz , W.J. Integration Strategies for Efficient Multizone Chemical Kinetics Models SAE Int. J. Fuels Lubr. 3 1 2010 241 255 10.4271/2010-01-0576
- Hindmarsh , A.C. , Brown , P.N. , Grant , K.E. , Lee , S.L. et al. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers ACM Trans. Math. Softw. 31 3 2005 363 396 10.1145/1089014.1089020
- Chang , J. , Güralp , O. , Filipi , Z. , Assanis , D. et al. New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux SAE Transactions, Section 3: Journal of Engines 113 2004 1576 1593
- Pitz , W.J. and Mueller , C.J. Recent Progress in the Development of Diesel Surrogate Fuels Prog. Energy Combust. Sci. 37 3 2011 330 350 10.1016/j.pecs.2010.06.004
- Rahimi , A. , Fatehifar , E. , and Saray , R.K. Development of an Optimized Chemical Kinetic Mechanism for Homogeneous Charge Compression Ignition Combustion of a Fuel Blend of N-Heptane and Natural Gas using a Genetic Algorithm Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 224 9 2010 1141 1159 10.1243/09544070JAUTO1343
- Yao , T. , Pei , Y. , Zhong , B.-J. , Som , S. et al. A Compact Skeletal Mechanism for N-Dodecane with Optimized Semi-Global Low-Temperature Chemistry for Diesel Engine Simulations Fuel 191 2017 339 349 10.1016/j.fuel.2016.11.083
- Guo , X. , Chen , Y. , Huang , H. , Chen , Y. et al. Development of a Diesel/Natural Gas Mechanism Model for the CFD Simulation of Dual-Fuel Engine ACS Omega 6 33 2021 21543 21555 10.1021/acsomega.1c02514
- Huang , H. , Lv , D. , Zhu , J. , Zhu , Z. et al. Development of a New Reduced Diesel/Natural Gas Mechanism for Dual-Fuel Engine Combustion and Emission Prediction Fuel 236 2019 30 42 10.1016/j.fuel.2018.08.161
- Wijeyakulasuriya , S. , Jupudi , R.S. , Givler , S. , Primus , R.J. et al. 2015 10.1115/ICEF2015-1077
- Jamali , A. and Nalim , M.R. 2016 10.1115/ICEF20169374
- Huang , H. , Zhu , J. , Lv , D. , Wei , Y. et al. Development of a Reduced N-Heptane-N-Butylbenzene-Polycyclic Aromatic Hydrocarbon (PAH) Mechanism for Engine Combustion Simulation and Soot Prediction Energy 165 2018 90 105 10.1016/j.energy.2018.09.162
- Mikulski , M. and Bekdemir , C. Understanding the Role of Low Reactivity Fuel Stratification in a Dual Fuel RCCI Engine - A Simulation Study Appl. Energy 191 2017 689 708 https://doi.org/10.1016/j.apenergy.2017.01.080
- Åstrand , U. , Aatola , H. , and Myllykoski , J. Wärtsilä 31-World’s most Efficient Fourstroke Engine 28th CIMAC World Congress Helsinki 2016 225
- Jay , D. CR Development in the Last Decade in Wärtsilä 28th CIMAC World Congress Helsinki 2016 232
- Yang , J. and Martin , J.K. Approximate Solution—One-Dimensional Energy Equation for Transient, Compressible, Low Mach Number Turbulent Boundary Layer Flows ASME.J. Heat Transfer. 111 3 1989 619 624 10.1115/1.3250727
- Neshat , E. and Saray , R.K. Development of a New Multi Zone Model for Prediction of HCCI (Homogenous Charge Compression Ignition) Engine Combustion, Performance and Emission Characteristics Energy 73 2014 325 339 10.1016/j.energy.2014.06.025
- Komninos , N.P. and Hountalas , D.T. Improvement and Validation of a Multi-Zone Model for HCCI Engine Combustion Concerning Performance and Emissions Energy Convers. Manag. 49 10 2008 2530 2537 10.1016/j.enconman.2008.05.008
- https://cleanpropulsion.org/
- Hautala , S. , Mikulski , M. , Söderäng , E. , Storm , X. et al. Towards a Digital Twin of a Mid-Speed Marine Engine: from Detailed 1D Engine Model to Real-Time Implementation on a Target Platform The 9th International Congress on Combustion Engines 2021