This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A New Pathway for Prediction of Gasoline Sprays using Machine-Learning Algorithms

Journal Article
2022-01-0492
ISSN: 2641-9645, e-ISSN: 2641-9645
Published March 29, 2022 by SAE International in United States
A New Pathway for Prediction of Gasoline Sprays using Machine-Learning Algorithms
Sector:
Citation: Hwang, J., Lee, P., Mun, S., Karathanassis, I. et al., "A New Pathway for Prediction of Gasoline Sprays using Machine-Learning Algorithms," SAE Int. J. Adv. & Curr. Prac. in Mobility 5(1):343-356, 2023, https://doi.org/10.4271/2022-01-0492.
Language: English

References

  1. Duronio , F. , De Vita , A. , Montanaro , A. , and Villante , C. Gasoline Direct Injection Engines - A Review of Latest Technologies and Trends. Part 2 Fuel 265 116947 2020 10.1016/j.fuel.2019.116947
  2. Yu , C.H. , Park , K.W. , Han , S.K. , and Kim , W.T. Development of Theta II 2.4L GDI Engine for High Power & Low Emission SAE Tech. Pap. 2009 10.4271/2009-01-1486
  3. Oh , H. and Bae , C. Effects of the Injection Timing on Spray and Combustion Characteristics in a Spray-Guided DISI Engine Under Lean-Stratified Operation Fuel 107 2013 225 235 10.1016/j.fuel.2013.01.019
  4. EPA Epa 2020
  5. Saliba , G. , Saleh , R. , Zhao , Y. , Presto , A.A. et al. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts Environ. Sci. Technol. 51 11 2017 6542 6552 10.1021/acs.est.6b06509
  6. Luijten , B. , Adomeit , P. , Brunn , A. , and Somers , B. Experimental Investigation of In-Cylinder Wall Wetting in GDI Engines Using a Shadowgraphy Method SAE Technical Paper 2013-01-1604 2013 https://doi.org/10.4271/2013-01-1604
  7. Whitaker , P. , Kapus , P. , Ogris , M. , and Hollerer , P. Measures to Reduce Particulate Emissions from Gasoline DI engines SAE Int. J. Engines 4 1 2011 1498 1512 10.4271/2011-01-1219
  8. Sivathanu , Y. , Lim , J. , Muliadi , A. , Nitulescu , O. et al. Estimating Velocity in Gasoline Direct Injection Sprays Using Statistical Pattern Imaging Velocimetry Int. J. Spray Combust. Dyn. 11 2018 1 8 10.1177/1756827718778289
  9. Sphicas , P. , Pickett , L.M. , Skeen , S. , Frank , J. et al. A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse SAE Int. J. Fuels Lubr. 10 1 2017 184 201 10.4271/2017-01-0837
  10. https://ecn.sandia.gov/gasoline-spray-combustion/computational-method/mesh-and-geometry/
  11. Liu , W. , Lu , Y. , Kang , Y. , Yan , J. et al. Macroscopic Characteristics of Flash-Boiling Spray Focused on Plume Interaction Int. J. Heat Mass Transf. 170 2021 120999 10.1016/j.ijheatmasstransfer.2021.120999
  12. Crua , C. , Manin , J. , and Pickett , L.M. On the Transcritical Mixing of Fuels at Diesel Engine Conditions Fuel 208 2017 535 548 10.1016/j.fuel.2017.06.091
  13. Sphicas , P. , Pickett , L.M. , Skeen , S.A. , and Frank , J.H. Inter-Plume Aerodynamics for Gasoline Spray Collapse Int. J. Engine Res. 19 10 2018 1048 1067 10.1177/1468087417740306
  14. Duke , D.J. , Kastengren , A.L. , Matusik , K.E. , Swantek , A.B. et al. Internal and Near Nozzle Measurements of Engine Combustion Network ‘Spray G’ Gasoline Direct Injectors Exp. Therm. Fluid Sci. 88 2017 608 621 10.1016/j.expthermflusci.2017.07.015
  15. Weiss , L. , Wensing , M. , Hwang , J. , Pickett , L.M. et al. Development of Limited-View Tomography for Measurement of Spray G Plume Direction and Liquid Volume Fraction Exp. Fluids 61 2 2020 1 17 10.1007/s00348-020-2885-0
  16. Paredi , D. , Lucchini , T. , D’Errico , G. , Onorati , A. et al. Validation of a Comprehensive Computational Fluid Dynamics Methodology to Predict the Direct Injection Process of Gasoline Sprays Using Spray G Experimental Data Int. J. Engine Res. 21 1 2020 199 216 10.1177/1468087419868020
  17. Payri , R. , Marti-Aldaravi , P. , Abboud , R. , and Bautista , A. Numerical analysis of GDI Flash Boiling Sprays Using Different Fuels Energies 14 5925 https://doi.org/10.3390/en14185925
  18. Neroorkar , K. , Shields , B. , Grover , R. Jr. , Plazas Torres , A. et al. Application of the Homogeneous Relaxation Model to Simulating Cavitating Flow of a Diesel Fuel SAE Technical Paper 2012-01-1269 2012 https://doi.org/10.4271/2012-01-1269
  19. Rachakonda , S.K. , Wang , Y. , Grover , R.O. , Moulai , M. et al. A Computational Approach to Predict External Spray Characteristics for Flashing and Cavitating Nozzles Int. J. Multiph. Flow 106 2018 21 33 10.1016/j.ijmultiphaseflow.2018.04.012
  20. Baldwin , E.T. , Grover , R.O. , Parrish , S.E. , Duke , D.J. et al. String Flash-Boiling in Gasoline Direct Injection Simulations with Transient Needle Motion Int. J. Multiph. Flow 87 2016 90 101 10.1016/j.ijmultiphaseflow.2016.09.004
  21. Saha , K. , Som , S. , and Battistoni , M. Investigation of Homogeneous Relaxation Model parameters and Their Implications for Gasoline Injectors At. Sprays 27 4 2017 345 365 10.1615/AtomizSpr.2017016338
  22. Hwang , J. , Yasutomi , K. , Arienti , M. , and Pickett , L. Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle SAE Technical Paper 2020-01-0828 2020 https://doi.org/10.4271/2020-01-0828
  23. Marco , A. , Hwang , J. , Pickett , L. , and Shekhawat , Y. A Thermally-Limited Bubble Growth Model for the Relaxation Time of Superheated Fuels Int. J. Heat Mass Transf. 159 2020 10.1016/j.ijheatmasstransfer.2020.120089
  24. Raissi , M. , Perdikaris , P. , and Karniadakis , G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations J. Comput. Phys. 378 2019 686 707 10.1016/j.jcp.2018.10.045
  25. Ikeda , Y. and Mazurkiewicz , D. Application of Neural Network Technique to Combustion Spray Dynamics Analysis Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2281 2002 408 425 10.1007/3-540-45884-0_30
  26. Han , Z. , Hossain , M.M. , Wang , Y. , Li , J. et al. Combustion Stability Monitoring Through Flame Imaging and Stacked Sparse Autoencoder Based Deep Neural Network Appl. Energy 259 2020 114159 10.1016/j.apenergy.2019.114159
  27. Koukouvinis , P. , Rodriguez , C. , Hwang , J. , Karathanassis , I. et al. Machine Learning and Transcritical Sprays: A Demonstration Study of Their Potential in ECN Spray-A Int. J. Engine Res. 2021 10.1177/14680874211020292
  28. Hwang , J. , Lee , P. , Mun , S. , Karathanassis , I.K. et al. Machine-Learning Enabled Prediction of 3D Spray Under Engine Combustion Network Spray G Conditions Fuel 293 2021 120444 10.1016/j.fuel.2021.120444
  29. Zhang , Y. , Xu , S. , Zhong , S. , Bai , X.-S. et al. Large Eddy Simulation of Spray Combustion Using Flamelet Generated Manifolds Combined with Artificial Neural Networks Energy AI 2 2020 100021 10.1016/j.egyai.2020.100021
  30. McCormick , R.L. , Fouts , L.A. , Fioroni , G.M. , Christensen , E.D. , et al. 2018
  31. Hwang , J. , Weiss , L. , Karathanassis , I.K. , Koukouvinis , P. et al. Spatio-Temporal Identification of Plume Dynamics by 3D Computed Tomography Using Engine Combustion Network Spray G Injector and Various Fuels Fuel 280 July 2020 118359 10.1016/j.fuel.2020.118359
  32. Westlye , F.R. , Penney , K. , Ivarsson , A. , Pickett , L.M. et al. Diffuse Back-Illumination Setup for High Temporally Resolved Extinction Imaging Appl. Opt. 56 17 2017 5028 10.1364/ao.56.005028
  33. Pickett , L.M. , Genzale , C.L. , and Manin , J. Uncertainty Quantification for Liquid Penetration of Evaporating Sprays at Diesel-Like Conditions At. Sprays 25 5 2015 425 452 10.1615/AtomizSpr.2015010618
  34. https://ecn.sandia.gov/gasoline-spray-combustion/target-condition/primary-spray-g-datasets/
  35. http://www.philiplaven.com/mieplot.htm
  36. Dahms , R.N. and Oefelein , J.C. The Significance of Drop Non-Sphericity in Sprays Int. J. Multiph. Flow 86 2016 67 85 10.1016/j.ijmultiphaseflow.2016.07.010
  37. Adachi , M. , McDonell , V. , Tanaka , D. , Senda , J. et al. Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray SAE Technical Paper 970871 1997 https://doi.org/10.4271/970871
  38. Fernandes de Mello , R. and Antonelli Ponti , M. Machine Learning: A Practical Approach on the Statistical Learning Theory Mach. Learn. 373 2018
  39. Foresee , F.D. and Hagan , M.T. GAUSS-NEWTON APPROXIMATION TO BAYESIAN LEARNING ** School of Electrical and Computer Engineering Network 1930-1935 1930

Cited By