This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Comparison of Excess Air (Lean) vs EGR Diluted Operation in a Pre-Chamber Air/Fuel Scavenged Dual Mode, Turbulent Jet Ignition Engine at High Dilution Rate (~40%)

Journal Article
2021-01-0455
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 06, 2021 by SAE International in United States
Comparison of Excess Air (Lean) vs EGR Diluted Operation in a Pre-Chamber Air/Fuel Scavenged Dual Mode, Turbulent Jet Ignition Engine at High Dilution Rate (~40%)
Sector:
Citation: Atis, C. and Schock, H., "Comparison of Excess Air (Lean) vs EGR Diluted Operation in a Pre-Chamber Air/Fuel Scavenged Dual Mode, Turbulent Jet Ignition Engine at High Dilution Rate (~40%)," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(4):1569-1584, 2021, https://doi.org/10.4271/2021-01-0455.
Language: English

References

  1. Tully , E.J. , and Heywood , J.B. Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer SAE Technical Paper 2003-01-0630 724 2003 https://doi.org/10.4271/2003-01-0630
  2. Attard , W.P. , Kohn , J. , and Parsons , P. Ignition Energy Development for a Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions SAE Int. J. Engines 3 2 481 496 2010 https://doi.org/10.4271/2010-32-0088
  3. Ivanič , Ž. , Ayala , F. , Goldwitz , J. , and Heywood , J.B. Effects of Hydrogen Enhancement on Efficiency and NOx Emissions of Lean and EGR-Diluted Mixtures in a SI Engine SAE Technical Paper 2005-01-0253 2005 https://doi.org/10.4271/2005-01-0253
  4. Yoshida , T. , Sato , A. , Suzuki , H. , Tanabe , T. , and Takahashi , N. Development of High Performance Three-Way-Catalyst SAE Technical Paper 2006-01-1061 2006 https://doi.org/10.4271/2006-01-1061
  5. Maiboom , A. , Tauzia , X. , and Hétet , J.F. Experimental Study of Various Effects of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of an Automotive Direct Injection Diesel Engine Energy 33 1 22 34 2008 https://doi.org/10.1016/j.energy.2007.08.010
  6. Ladommatos , N. , Abdelhalim , S.M. , Zhao , H. , and Hu , Z. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen SAE Technical Paper 961165 1996 https://doi.org/10.4271/961165
  7. Ladommatos , N. , Abdelhalim , S.M. , Zhao , H. , and Hu , Z. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 4: Effects of Carbon Dioxide and Water Vapour SAE Technical Paper 971660 1997 https://doi.org/10.4271/971660
  8. Duva , B.C. , Wang , Y.C. , Chance , L. , and Toulson , E. The Effect of Exhaust Gas Recirculation (EGR) on Fundamental Characteristics of Premixed Methane/Air Flames SAE Technical Paper 2020-01-0339 2020 https://doi.org/10.4271/2020-01-0339
  9. Hu , E. , Jiang , X. , Huang , Z. , and Iida , N. Numerical Study on the Effects of Diluents on the Laminar Burning Velocity of Methane-Air Mixtures Energy and Fuels 26 7 4242 4252 2012 10.1021/ef300535s
  10. Maiboom , A. , Tauzia , X. , and Hétet , J.F. Influence of High Rates of Supplemental Cooled EGR on NOx and PM Emissions of an Automotive HSDI Diesel Engine Using an LP EGR Loop Int. J. Energy Res. 32 1383 1398 2008 10.1002/er.1455
  11. Toulson , E. , Schock , H.J. , and Attard , W.P. A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems SAE Technical Paper 2010-01-2263 2010 https://doi.org/10.4271/2010-01-2263
  12. Ricardo , H.R. Recent Research Work on the Internal-Combustion Engine SAE Technical Paper 220001 1922 https://doi.org/10.4271/220001
  13. Gussak , L.A. High Chemical Activity of Incomplete Combustion Products and a Method of Prechamber Torch Ignition for Avalanche Activation of Combustion in Internal Combustion Engines SAE Technical Paper 750890 1975 https://doi.org/10.4271/750890
  14. Gussak , L.A. , Karpov , V.P. , and Tikhonov , Y.V. The Application of Lag-Process in Prechamber Engines SAE Technical Paper 790692 1979 https://doi.org/10.4271/790692
  15. Gussak , L.A. The Role of Chemical Activity and Turbulence Intensity in Prechamber-Torch Organization of Combustion of a Stationary Flow of a Fuel-Air Mixture SAE Technical Paper 830592 1983 https://doi.org/10.4271/830592
  16. Attard , W.P. , Bassett , M. , Parsons , P. , and Blaxill , H. A New Combustion System Achieving High Drive Cycle Fuel Economy Improvements in a Modern Vehicle Powertrain SAE Technical Paper 2011-01-0664 2011 https://doi.org/10.4271/2011-01-0664
  17. Attard , W.P. , and Blaxill , H. A Gasoline Fueled Pre-Chamber Jet Ignition Combustion System at Unthrottled Conditions SAE Int. J. Engines 5 2 315 329 2012 https://doi.org/10.4271/2012-01-0386
  18. Vedula , R.T. , Song , R. , Stuecken , T. , Zhu , G.G. , and Schock , H. Thermal Efficiency of a Dual-Mode Turbulent Jet Ignition Engine under Lean and Near-Stoichiometric Operation Int. J. Engine Res. 18 10 1055 1066 2017 10.1177/1468087417699979
  19. Tolou , S. , and Schock , H. Experiments and Modeling of a Dual-Mode, Turbulent Jet Ignition Engine Int. J. Engine Res. 2019 10.1177/1468087419875880
  20. Atis , C. , Chowdhury , S.S. , Ayele , Y. , Stuecken , T. et al. Ultra-Lean and High EGR Operation of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine with Active Pre-chamber Scavenging SAE Technical Paper 2020-01-1117 2020 https://doi.org/10.4271/2020-01-1117
  21. Attard , W.P. , Kohn , J. , and Parsons , P. Ignition Energy Development for a Spark Initiated Combustion System Capable of High Load, High Efficiency and Near zero NOx Emissions SAE Int. J. Engines 3 2 481 496 2010 https://doi.org/10.4271/2010-32-0088
  22. Attard , W.P. , Toulson , E. , Huisjen , A. , Chen , X. et al. Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization SAE Technical Paper 2012-01-0823 2012 https://doi.org/10.4271/2012-01-0823
  23. Attard , W.P. , Fraser , N. , Parsons , P. , and Toulson , E. A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain SAE Int. J. Engines 3 2 20 37 2010 https://doi.org/10.4271/2010-01-1457
  24. Attard , W.P. , and Parsons , P. A Normally Aspirated Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero Nox Emissions in a Modern Vehicle Powertrain SAE Int. J. Engines 3 2 269 287 2010 https://doi.org/10.4271/2010-01-2196
  25. Attard , W.P. , and Blaxill , H. A Single Fuel Pre-Chamber Jet Ignition Powertrain Achieving High Load, High Efficiency and Near Zero NOx Emissions SAE Int. J. Engines 5 3 734 746 2012
  26. Attard , W.P. , and Parsons , P. Flame Kernel Development for a Spark Initiated Pre-Chamber Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions SAE Int. J. Engines 3 2 408 427 2010 https://doi.org/10.4271/2010-01-2260
  27. Vedula , R.T. , Gentz , G. , Stuecken , T. , Toulson , E. , and Schock , H. Lean Burn Combustion of Iso-Octane in a Rapid Compression Machine Using Dual Mode Turbulent Jet Ignition System SAE Int. J. Engines 11 1 3 11 2018 https://doi.org/10.4271/03-11-01-0007
  28. Song , R. , Vedula , R.T. , Zhu , G. , and Schock , H. A Control-Oriented Combustion Model for a Turbulent Jet Ignition Engine Using Liquid Fuel Int. J. Engine Res. 2017 https://doi.org/10.1177/1468087417731698
  29. Lavoie , G.A. , Ortiz-Soto , E. , Babajimopoulos , A. , Martz , J.B. , and Assanis , D.N. Thermodynamic Sweet Spot for Highefficiency, Dilute, Boosted Gasoline Engines Int. J. Engine Res. 14 3 260 278 2013 10.1177/1468087412455372
  30. Caton , J.A. A Comparison of Lean Operation and Exhaust Gas Recirculation: Thermodynamic Reasons for the Increases of Efficiency SAE Technical Paper 2013-01-0266 2 2013 https://doi.org/10.4271/2013-01-0266
  31. Lee , S. , Park , S. , Kim , C. , Kim , Y.M. et al. Comparative study on EGR and Lean Burn Strategies Employed in an SI Engine Fueled by Low Calorific Gas Appl. Energy 129 10 16 2014 10.1016/j.apenergy.2014.04.082
  32. Ibrahim , A. , and Bari , S. A Comparison Between EGR and Lean-Burn Strategies Employed in a Natural Gas SI Engine using a Two-Zone Combustion Model Energy Convers. Manag. 50 12 3129 3139 2009 10.1016/j.enconman.2009.08.012
  33. Saanum , I. , Bysveen , M. , Tunestål , P. , and Johansson , B. Lean Burn Versus Stoichiometric Operation with EGR and 3-way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas SAE Technical Paper 2007-01-0015 2007 https://doi.org/10.4271/2007-01-0015
  34. Benajes , J. , Novella , R. , Gomez-Soriano , J. , Martinez-Hernandiz , P.J. et al. Evaluation of the Passive Pre-Chamber Ignition Concept for Future High Compression Ratio Turbocharged Spark-Ignition Engines Appl. Energy 248 April 576 588 2019 10.1016/j.apenergy.2019.04.131
  35. Kargul , J. , Stuhldreher , M. , Barba , D. , Schenk , C. et al. Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson Cycle Engine with Cooled-EGR SAE Int. J. Adv. & Curr. Prac. in Mobility 601 638 2019 https://doi.org/10.4271/2019-01-0249
  36. Hoepke , B. , Jannsen , S. , Kasseris , E. , and Cheng , W.K. EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation SAE Int. J. Engines 5 2 547 559 2012 https://doi.org/10.4271/2012-01-0707
  37. GRI-Mech Thermodynamic Data
  38. Heywood , J.B. Internal Combustion Engine Fundamentals Second New York McGraw-Hill Education 2018
  39. Chaos , M. , Kazakov , A. , Zhao , Z. , and Dryer , F.L. A High-Temperature Chemical Kinetic Model for Primary Reference Fuels Int. J. Chem. Kinet. 39 399 414 2007 10.1002/kin
  40. Mehl , M. , Curran , H.J. , Pitz , W.J. , and Westbrook , C.K. Chemical Kinetic Modeling of Component Mixtures Relevant to Gasoline Eur. Combust. Meet. 1-6 2009
  41. Duva , B.C. , Chance , L. , and Toulson , E. Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures with CO2 Dilution SAE Int. J. Adv. Curr. Pr. Mobil. 1 3 1148 1157 2019 https://doi.org/10.4271/2019-01-0572
  42. Einewall , P. , Tunestal , P. , and Johansson , B. Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst SAE Technical Paper 2005-01-0250 2005 https://doi.org/10.4271/2005-01-0250
  43. General Motors Automotive Engine Test Code for Spark Ignition Engines 1994
  44. Mueller , M. General Air Fuel Ratio and EGR Definitions and Their Calculation from Emissions SAE Technical Paper 2010-01-1285 2010 https://doi.org/10.4271/2010-01-1285
  45. Surnilla , G. , Soltis , R. , Hilditch , J. , House , C. et al. Intake Oxygen Sensor for EGR Measurement SAE Technical Paper 2016-01-1070 2016 https://doi.org/10.4271/2016-01-1070
  46. Ayala , F.A. , Gerty , M.D. , and Heywood , J.B. Effects of Combustion Phasing, Relative Air-Fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency SAE Technical Paper 2006-01-0229 2006 https://doi.org/10.4271/2006-01-0229
  47. Quader , A.A. Lean Combustion and the Misfire limit in Spark Ignition Engines SAE Technical Paper 741055 1974 https://doi.org/10.4271/741055

Cited By