This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Simulative Investigation of the Service Methane Number of LNG Mixtures Using 1D-Engine Simulation and Reaction Kinetics
Technical Paper
2021-01-0378
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Following the ongoing software development, the continuously increasing accuracy of 0D/1D-simulation of combustion engines and chemical mechanisms for the use in reaction kinetic calculation open up a new possibility to calculate combustion processes. Particularly combustion processes with high dependency on reaction kinetics, such as knocking events, can be predicted. The simulation of knock events further allows a characterization of the knock behavior of LNG mixtures. This paper focuses on 1D-simulative investigation of knocking events to determine the Service Methane Number of different LNG mixtures and their dependency on single gas components. This is realized with two different approaches, which are presented in this work. In the first approach, measurement data and a Three-Pressure-Analysis-model are used to describe the in-cylinder condition at inlet valve closes. The results are used as starting condition in a reaction kinetic model which simulates the geometric and thermal compression during the engine combustion cycle. The second approach consists of a predictive 1D-engine simulation model with an integrated knock model on the basis of reaction kinetics and a statistical model to describe Cycle-to-Cycle variations. Using these two approaches, the knock behavior of reference gases, consisting of methane and hydrogen, and different LNG-mixtures is simulated under comparable engine operating and knock conditions. By comparison of reference gases and LNG mixtures, the Service Methane Number and its dependency on single gas components is determined.
Authors
Topic
Citation
Di Modica, D., Frerichs, J., Meier, C., Eilts, P. et al., "Simulative Investigation of the Service Methane Number of LNG Mixtures Using 1D-Engine Simulation and Reaction Kinetics," SAE Technical Paper 2021-01-0378, 2021, https://doi.org/10.4271/2021-01-0378.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 |
Also In
References
- Æsøy , V. , Einang , P. , Stenersen , D. , Hennie , E. , et al. LNG-Fuelled Engines and Fuel Systems for MediumSpeed Engines in Maritime Applications SAE Technical Paper 2011-01-1998 2011 https://doi.org/10.4271/2011-01-1998
- Mustafi , N. , and Raine , R. A Study of the Emissions of a Dual Fuel Engine Operating with Alternative Gaseous Fuels SAE Technical Paper 2008-01-1394 2008 https://doi.org/10.4271/2008-01-1394
- International Maritime Organization Third IMO Greenhouse Gas Study 2014 London 2015
- Pachauri , R. , Allen , M. , Barros , V. , Broome , J. et al. Climate Change 2014 Synthesis Report Geneva Intergovernmental Panel on Climate Change 2014
- Leiker , M. , Cartellieri , W. , Christoph , K. , Pfeifer , U. et al. Evaluation of Antiknocking Property of Gaseous Fuels by Means of Methane Number and its Practical Application to Gas Engines ASME-Paper 72-DGP-4 1972
- Cartellieri , W. and Pfeifer , U. Erweiterung der Energieerzeugung durch Kraftgase Forschungsberichte Verbrennungskraftmaschinen, Heft 120 Frankfurt/Main Forschungsvereinigung Verbrennungskraftmaschinen 1971
- Malenshek , M. and Olsen , D.B. Methane Number Testing of Alternative Gaseous Fuels Fuel 88 650 656 2009
- Andersen , P. Algorithm for Methane Number Determination for Natural Gasses Horsholm, Danish Gas Technology Centre 1999
- MWM https://www.euromot.eu/publication-and-events/publications/
- Gieseking , B. and Brown , A. Novel Algorithm for Calculating the Methane Number of Liquefied Natural Gas with Defined Uncertainty Fuel 185 932 940 2016
- Cummins https://www.cumminswestport.com/fuel-quality-calculator
- Van Essen , M. , Gersen , S. , Van Dijk , G. , and Levinsky , H. Two-Zone Thermodynamic Model to Predict Temporal Variations in Pressure of the End Gas in an Engine Cylinder Cycle SAE Technical Paper 2013-24-0028 2013 https://doi.org/10.4271/2013-24-0028
- Eilts , P. and Klare , L. Investigations on the Determination of the Service Methane Number of LNG SAE Technical Paper 2018-01-1143 2018 https://doi.org/10.4271/2018-01-1143
- Livengood , J. and Wu , P. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symp. Int. Combust 5 347 356 1955
- Pan , J. , Zhao , P. , Law , C. , and Wei , H. A Predictive Livengood-Wu Correlation for Two-Stage Ignition International Journal of Engine Research 17 2016 10.1177/1468087415619516
- Fandakov , A. , Grill , M. , Bargende , M. , and Kulzer , A. Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock SAE Int. J. Engines 10 4 2017 https://doi.org/10.4271/2017-24-0001
- Fandakov , A. , Grill , M. , Bargende , M. , and Kulzer , A.C. A Two-Stage Knock Model for the Development of Future SI Engine Concepts SAE Technical Paper 2018-01-0855 2018 https://doi.org/10.4271/2018-01-0855
- Urban , L. , Grill , M. , Hann , S. , and Bargende , M. Ansatz für die Klopfmodellierung methanbasierter Kraftstoffe auf Basis reaktionskinetischer Untersuchungen 16. Tagung “Der Arbeitsprozess des Verbrennungsmotors” Sept. 28-29 2017 Graz - Austria 2017
- Weisser , G. 2000
- Scharlipp , S. and Urban , L. Methan-Kraftstoffe: Potenzialstudie und Kennzahlen Abschlussbericht des FVV-Projekts Nr 1126 Forschungsvereinigung Verbrennungskraftmaschinen Frankfurt am Main 2015
- Leppard , W. A Detailed Chemical Kinetics Simulation of Engine Knock Combustion Science and Technology 43 1 2 1985 10.1080/00102208508946993
- Cowart , J. , Keck , J. , Heywood , J. , Westbrook , C. , et al. Engine Knock Predictions Using a Fully-Detailed and a Reduced Chemical Kinetic Mechanism Symp. (Int.) Combust 23 1055 1062 The Combustion Institute Pittsburgh, PA 1991
- Gersen , S. , Rotink , M. , van Dijk , G. , Levinsky , H. A New Experimentally Tested Method to classify Gaseous fuels for Knock Resistance Based on the Chemical and Physical Properties of the Gas P3 18 2011
- Gersen , S. , Essen , M. , Levinsky , H. , and Dijk , G. Characterizing Gaseous Fuels for Their Knock Resistance based on the Chemical and Physical Properties of the Fuel SAE Int. J. Fuels Lubr. 9 1 2016 https://doi.org/10.4271/2015-01-9077
- Donato , N. , Aul , C. , Petersen , E. , Zinner , C. et al. Ignition and Oxidation of 50/50 Butane Isomer Blends Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 132 2010 10.1115/1.3204654
- Healy , D. , Donato , N. , Aul , C. , Petersen , E. et al. n-Butane Ignition Delay Time Measurements at High Pressure and Detailed Chemical KineticModeling Combust. Flame 157 8 1526 1539 2010
- Healy , D. , Donato , N. , Aul , C. , Petersen , E. et al. Isobutane Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetic Modeling Combust. Flame 157 8 1540 1551 2010
- Healy , D. , Kopp , M. , Polley , N. , Petersen , E. et al. Methane/n-Butane Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations Energy and Fuels 24 3 1617 1627 2010
- Healy , D. , Kalitan , D. , Aul , C. , Petersen , E. et al. Oxidation of C1-C5 Alkane Quinternary Natural Gas Mixtures at High Pressures Energy and Fuels 24 3 1521 1528 2010
- Blizard , N. , and Keck , J. Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines SAE Paper 740191 1974 https://doi.org/10.4271/740191
- Tabaczynski , R. , Ferguson , C. , and Radhakrishnan , K. A Turbulent Entrainment Model for Spark-Ignition Engine Combustion SAE Paper 770647 1977 https://doi.org/10.4271/770647
- Liao , S. , Jiang , D. , and Cheng , Q. Determination of Laminar Burning Velocities for Natural Gas Fuel 83 1247 1250 2007 10.1016/j.fuel.2003.12.001
- GT-Power User’s Manual, Version 2020 Gama-Technologies Inc 2020
- Hann , S. , Urban , L. , Grill , M. , and Bargende , M. Influence of Binary CNG Substitute Composition on the Prediction of Burn Rate, Engine Knock and Cycle-to-Cycle Variations SAE Int. J. Engines 10 2 2017 https://doi.org/10.4271/2017-01-0518
- Gülder , Ö. Turbulent Premixed Flame Propagation Models for different Combustion Regimes Proc. Combust, Inst. 23 743 750 1990
- Mann , K. , Ting , D. , and Henshaw , P. A Semi-Empirical Model of Spark-Ignited Turbulent Flame Growth SAE Technical Paper 2000-01-0201 2000 https://doi.org/10.4271/2000-01-0201
- Yang , S. , Kolla , H. , and Swaminathan , N. Application of a New Turbulent Flame Speed Combustion Model on Burn Rate Simulation of Spark Ignition Engines SAE Technical Paper 2016-01-0588 2016 https://doi.org/10.4271/2016-01-0588
- Hann , S. , Grill , M. , Bargende , M. , and Altenschmidt , F. A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection SAE Technical Paper 2020-01-0574 2020 https://doi.org/10.4271/2020-01-0574
- Morel , T. , Rackmil , C. , Keribar , R. , and Jennings , M. Model for Heat Transfer and Combustion in Spark Ignited Engines and its Comparison with Experiments SAE Technical Paper 880198 1988 https://doi.org/10.4271/880198
- Bailly , C. and Comte-Bellot , G. Turbulence Berlin/Heidelberg Springer 2015 10.1007/978-3-319-16160-0
- Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Transactions 76 3065 1967 https://doi.org/10.4271/670931
- Goodwin , D. , Speth , R. , Moffat , R. , and Weber , B. 2018
- Müller , U. 1993
- Langeheinecke , K. , Kaufmann , A. , Langeheinecke , K. , and Thieleke , G. Thermodynamik für Ingenieure: Ein Lehr- und Arbeitsbuch für das Studium Berlin/Heidelberg/New York Springer-Verlag 2017 10.1007/978-3-658-03169-5
- Wenig , M. , Grill , M. and Bargende , M. A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation SAE Int. J. Engines 6 2 2013 https://doi.org/10.4271/2013-01-1315
- Zhang , K. , Banyon , C. , Togbé , C. , Dagaut , P. et al. An Experimental and Kinetic Modeling Study of N-Hexane Oxidation Combustion and Flame 162 11 4194 4207 2015 10.1016/j.combustflame.2015.08.001
- Vallabhuni , S. , Lele , A. , Patel , V. , Lucassen , A. et al. Autoignition Studies of Liquefied Natural Gas (LNG) in a Shock Tube and a Rapid Compression Machine Fuel 232 2018 423 430 2018 10.1016/j.fuel.2018.04.168
- Metcalfe , W. , Burke , S. , Ahmed , S. , and Curran , H. A Hierarchical and Comparative Kinetic Modeling Study of C1-C2 Hydrocarbon and Oxygenated Fuels Int. J. Chem. Kinet. 45 638 675 2013 2013 10.1002/kin.20802
- Bugler , J. , Rodriguez , A. , Herbinet , O. , Battin-Leclerc , F. et al. Experiments and Modeling of n-Pentane Oxidation in Two Jet-Stirred Reactors Proc. Combust. Inst 36 2017 441 448 2016 10.1016/j.proci.2016.05.048
- Bugler , J. , Marks , B. , Mathieu , O. , Archuleta , R. et al. An Ignition Delay Time and Chemical Kinetic Modelling Study of the Pentane Isomers Combustion and Flame 163 2016 136 156 2016 10.1016/j.combustflame.2015.09.014
- Shu , B. , Vallabhuni , S. , Zheng , J. , Agarwal , S. et al. Experimental and Modeling Studies on the Correlation Between Auto-ignition Delays and the Methane Number of Liquefied Natural Gas (LNG) and Liquefied Biogas (LBG) Front. Mech. Eng. 6 47 2020 10.3389/fmech.2020.00047
- Pepiot-Desjardins , P. and Pitsch , H. An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms Combust. Flame. 154 2008 67 81 2007 10.1016/j.combustflame.2007.10.020
- Ribaucour , M. , Minetti , R. , Sochet , L. , Curran , H. et al. Ignition of Isomers of Pentane: An Experimental and Kinetic Modeling Study Proceedings of the Combustion Institute 28 1671 1678 2000 10.1016/S0082-0784(00)80566-4
- Marks , B. , Mathieu , O. , Archuleta , R. , Petersen , E. , et al. Ignition Delay Time Measurements and Modeling of n-Pentane and iso-Pentane at Elevated Pressures 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 2013 10.2514/6.2013-160
- Pan , J. , Sheppard , C. , Tindall , A. , Berzins , M. et al. End Gas Inhomogeneity, Autoignition and Knock SAE Paper 982616 1998
- Cho , J. and Song , H. Understanding the Effect of Inhomogeneous Mixing on Knocking Characteristics of Iso-Octane by Using Rapid Compression Machine SAE Int. J. Engines 11 6 769 781 2018 https://doi.org/10.4271/2018-01-0212
- Bäuerle , B. , Hoffmann , F. , Behrendt , F. , and Warnatz , J. Detection of Hot Spots in the End Gas of an Internal Combustion Engine Using Two-Dimensional LIF of Formaldehyde Proc. Combust. Inst. 25 135 1994