This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Developing Prediction Based Algorithms for Energy and Exergy Flow

Journal Article
2021-01-0258
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 06, 2021 by SAE International in United States
Developing Prediction Based Algorithms for Energy and Exergy Flow
Sector:
Citation: Jane, R., Kim, C., and James, L., "Developing Prediction Based Algorithms for Energy and Exergy Flow," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(4):1599-1619, 2021, https://doi.org/10.4271/2021-01-0258.
Language: English

References

  1. Kůrková , V. Limitations of Shallow Networks Representing Finite Mappings Neural Computing & Applications 31 6 1783 1792 2018 https://doi.org/10.1007/s00521-018-3680-1
  2. Goodfellow , I. , Bengio , Y. , and Courville , A. Deep Learning The MIT Press 2016 0-26-203561-8
  3. Tian , Z. , Qian , C.H. , Gu , B. , Yang , L. , and Liu , F. Electric Vehicle Air Conditioning System Performance Prediction Based on Artificial Neural Network Applied Thermal Engineering 89 101 114 2015 1359-4311
  4. Xing , Yang , Lv , Chen , Cao , Dongpu , Lu , Chao Energy Oriented Driving Behavior Analysis and Personalized Prediction of Vehicle States with Joint Time Series Modeling Applied Energy 261 114471 2020 0306-2619
  5. Valera , J.J. , Heriz , B. , Lux , G. , Caus , J. , and Bader , B. Driving Cycle and Road Grade On-Board Predictions for the Optimal Energy Management in EV-PHEVs 2013 World Electric Vehicle Symposium and Exhibition (EVS27) Barcelona 2013 1 10 10.1109/EVS.2013.6914763
  6. Rhode , Stephan , Van Vaerenbergh , Steven , Pfriem , Matthias Power Prediction for Electric Vehicles Using Online Machine Learning Engineering Applications of Artificial Intelligence 87 103278 2020 0952-1976 10.1016/j.engappai.2019.103278
  7. Wang , Xuechao , Chen , Jinzhou , Quan , Shengwei , Wang , Ya-Xiong , He , Hongwen Hierarchical Model Predictive Control via Deep Learning Vehicle Speed Predictions for Oxygen Stoichiometry Regulation of Fuel Cells Applied Energy 276 115460 2020 0306-2619 10.1016/j.apenergy.2020.115460
  8. Dieselnet.com 2020 https://dieselnet.com/standards/cycles/manhattan.php
  9. Chen , Yuan-Lin , Chih-Hsien-Huang , Yao-Wen Kuo and Wang , Shung-Sung Artificial Neural Network for Predictions of Vehicle Drivable Range and Period 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012) Istanbul 2012 329 333 10.1109/ICVES.2012.6294324
  10. Hutangkabodee , S. , Zweiri , Y.H. , Seneviratne , L.D. , and Althoefer , K. Performance Prediction of a Wheeled Vehicle on Unknown Terrain Using Identified Soil Parameters Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006 Orlando, FL 2006 3356 3361 10.1109/ROBOT.2006.1642214
  11. Li , L. , Song , J. , Li , H.-Z. , Shan , D.-S. et al. Comprehensive Prediction Method of Road Friction for Vehicle Dynamics Control Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223 8 987 1002 2009 10.1243/09544070JAUTO1168
  12. Vargas-Meléndez , L. et al. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation Sensors 16 9 1400 2016
  13. Johannesson , L. , Nilsson , M. , and Murgovski , N. Look-Ahead Vehicle Energy Management with Traffic Predictions IFAC-PapersOnLine 48 15 244 251 2015
  14. Wang , Xin , et al. A Real-Time Collision Prediction Mechanism with Deep Learning for Intelligent Transportation System IEEE Transactions on Vehicular Technology 2020 1
  15. Boukerche , A. , Tao , Y. , and Sun , P. Artificial Intelligence-Based Vehicular Traffic Flow Prediction Methods for Supporting Intelligent Transportation Systems Computer Networks 182 107484 2020
  16. Petersen , N.C. , Rodrigues , F. , and Pereira , F.C. Multi-Output Bus Travel Time Prediction with Convolutional LSTM Neural Network Expert Systems with Applications 120 426 435 2019
  17. Çengel , Y.A. , and Boles , M.A. Thermodynamics: An Engineering Approach Boston McGraw-Hill 2001
  18. Dunbar , W.B. , and Murray , R.M. Model Predictive Control of Coordinated Multi-Vehicle Formations Proceedings of the 41st IEEE Conference on Decision and Control, 2002 Las Vegas, NV, USA 4 4631 4636 2002 10.1109/CDC.2002.1185108
  19. Xiang , C. et al. Energy Management of a Dual-Mode Power-Split Hybrid Electric Vehicle Based on Velocity Prediction and Nonlinear Model Predictive Control Applied Energy 189 640 653 2017
  20. Romijn , C. et al. Real-Time Distributed Economic Model Predictive Control for Complete Vehicle Energy Management Energies (Basel) 10 8 1096 2017 10.3390/en10081096
  21. Zeng , Xiangrui , and Junmin Wang A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control With Road Grade Preview IEEE Transactions on Control Systems Technology 23 6 2416 2423 2015
  22. James , C. , Kim , T.Y. , and Jane , R. A Review of Exergy Based Optimization and Control Processes 8 3 364 2020
  23. https://clearpathrobotics.com/
  24. Jane , Robert , Parker , Gordon G. , Weaver , Wayne , Matthews , Ronald , Rizzo , Denise , and Cook , Michael Optimal Power Management of Vehicle Sourced Military Outposts SAE International Journal of Commercial Vehicles 10 1 https://doi.org/10.4271/2017-01-0271
  25. Tan , R.H.G. , and Hoo , L.Y.H. DC-DC Converter Modeling and Simulation Using State Space Approach 2015 IEEE Conference on Energy Conversion (CENCON) Johor Bahru 2015 42 47 10.1109/CENCON.2015.7409511
  26. Navarro , D. , Cortes , D. , and Galaz-Larios , M. A Port-Hamiltonian Approach to Control DC-DC Power Converters Studies in Informatics and Control 26 3 269 276 2017
  27. Mungporn , Pongsiri , et al. Study of Hamiltonian Energy Control of Multiphase Interleaved Fuel Cell Boost Converter 2019 Research, Invention, and Innovation Congress (RI2C) IEEE 2019
  28. Krause , P.C. , Wasynczuk , O. , Sudhoff , S.D. , and Pekarek , S. Analysis of Electric Machinery and Drive Systems, Vol. 2 New York IEEE Press 2002
  29. The Mathworks 2020 www.mathworks.com/help/physmod/sdl/ref/tiremagicformula.html
  30. Pacejka , H.B. Tire and Vehicle Dynamics Elsevier Science 2005
  31. The Mathworks 2020 www.mathworks.com/help/physmod/sdl/ref/tiremagicformula.html
  32. Gillespie , T. Fundamentals of Vehicle Dynamics Warrendale, PA Society of Automotive Engineers 1992
  33. The Mathworks 2020 https://www.mathworks.com/help/deeplearning/ref/trainlm.html
  34. Okkan , U. , and Mollamahmutoğlu , A. Çoruh Nehri günlük akımlarının yapay sinir ağları ile tahmin edilmesi Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14( 3 251 261 2010
  35. Sakinah , Nur , Tahir , Muhlis , Badriyah , Tessy , and Syarif , Iwan LSTM With Adam Optimization-Powered High Accuracy Preeclampsia Classification 2019 International Electronics Symposium (IES) 314 319 IEEE 2019
  36. Okkan , U. Application of Levenberg-Marquardt Optimization Algorithm Based Multilayer Neural Networks for Hydrological Time Series Modeling An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 1 1 53 63 2011
  37. Zheng , J. , Xu , C. , Zhang , Z. , Li , X. Electric Load Forecasting in Smart Grids Using Long-Short-Term-Memory Based Recurrent Neural Network 2017 51st Annual Conference on Information Sciences and Systems (CISS) 2017
  38. Miller , John When Recurrent Models Don’t Need to be Recurrent https://bair.berkeley.edu/blog/2018/08/06/recurrent/
  39. Razmara , M. , Bidarvatan , M. , Shahbakhti , M. , and Robinett , R.D. III Optimal Exergy-Based Control of Internal Combustion Engines Applied Energy 183 1389 1403 2016
  40. Razmara , M. , Maasoumy , M. , Shahbakhti , M. , and Robinett , R.D. III Optimal Exergy Control of Building HVAC System Applied Energy 156 555 565 2015

Cited By