This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Power and Efficiency Characteristics of a Hybrid Electrochemical-ICE Cycle

Journal Article
2021-01-0230
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 06, 2021 by SAE International in United States
Power and Efficiency Characteristics of a Hybrid Electrochemical-ICE Cycle
Sector:
Citation: Diskin, D. and Tartakovsky, L., "Power and Efficiency Characteristics of a Hybrid Electrochemical-ICE Cycle," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(4):1487-1494, 2021, https://doi.org/10.4271/2021-01-0230.
Language: English

References

  1. Zabihian , F. , and Fung , A. A Review on Modeling of Hybrid Solid Oxide Fuel Cell Systems International Journal of Engineering 3 2 85 119 2009
  2. Winkler , W. , Nehter , P. , Williams , M.C. , Tucker , D. et al. General Fuel Cell Hybrid Synergies and Hybrid System Testing Status J. Power Sources 159 656 666 2006 10.1016/j.jpowsour.2005.09.070
  3. Dunbar , W.R. , Lior , N. , and Gaggioli , R.A. Exergetic Advantages of Topping Rankine Power Cycles with Fuel Cell Units Am. Soc. Mech. Eng. Adv. Energy Syst. Div. (AES) 21 63 68 1990
  4. Harvey , S.P. , and Richter , H.J. Improved Gas Turbine Power Plant Efficiency by Use of Recycled Exhaust Gases and Fuel Cell Technology Proc. ASME Winter Annual Meeting 30 199 207 1993
  5. Gorla , R.S. Probabilistic Analysis of a Solid-Oxide Fuel-Cell Based Hybrid Gas-Turbine System Appl. Energy 78 63 74 2004 10.1016/S0306-2619(03)00006-0
  6. Kim , J. , Kim , Y. , Choi , W. , Ahn , K.Y. et al. Analysis on the Operating Performance of 5-kW Class Solid Oxide Fuel Cell-Internal Combustion Engine Hybrid System Using Spark-Assisted Ignition Appl. Energy 260 114231 2020 10.1016/j.apenergy.2019.114231
  7. Park , S.H. , Lee , Y.D. , and Ahn , K.Y. Performance Analysis of an SOFC/HCCI Engine Hybrid System: System Simulation and Thermo-economic Comparison Int. J. Hydrog. Energy 39 1799 1810 2014 10.1016/j.ijhydene.2013.10.171
  8. Lee , Y.D. , Ahn , K.Y. , Morosuk , T. , and Tsatsaronis , G. Exergetic and Exergoeconomic Evaluation of an SOFC-Engine Hybrid Power Generation System Energy 145 810 822 2018 10.1016/j.energy.2017.12.102
  9. Novikov , I.I. Efficiency of an Atomic Power Generating Installation Sov. J. At. Energy 3 1269 1272 1957
  10. Curzon , F.L. , and Ahlborn , B. Efficiency of a Carnot Engine at Maximum Power Output Am. J. Phys. 43 22 24 1975
  11. Hoffmann , K.H. , Burzler , J.M. , and Schubert , S. Endoreversible Thermodynamics Cite Seer 22 311 1997
  12. Esposito , M. , Kawai , R. , Lindenberg , K. , and Van den Broeck , C. Efficiency at Maximum Power of Low-dissipation Carnot Engines Phys. Rev. Lett. 105 150603 2010 10.1103/PhysRevLett.105.150603
  13. Guo , J. , Wang , J. , Wang , Y. , and Chen , J. Universal Efficiency Bounds of Weak-Dissipative Thermodynamic Cycles at the Maximum Power Output Phys. Rev. E 87 012133 2013 10.1103/PhysRevE.87.012133
  14. Diskin , D. , and Tartakovsky , L. Efficiency at Maximum Power of the Low-Dissipation Hybrid Electrochemical-Otto Cycle Energies 13 15 3961 2020 10.3390/en13153961
  15. Petrescu , S. , Maris , V. , Costea , M. , Boriaru , N. et al. Comparison Between Fuel Cells and Heat Engines. I. A Similar Approach in the Framework of Thermodynamics with Finite Speed Rev. Chim. 64 739 746 2013
  16. Pettersson , L.J. , and Westerholm , R. State of the Art of Multi-Fuel Reformers for Fuel Cell Vehicles: Problem Identification and Research Needs Int. J. Hydrog. Energy 26 243 264 2001 10.1016/S0360-3199(00)00073-2
  17. Tartakovsky , L. , and Sheintuch , M. Fuel Reforming in Internal Combustion Engines Prog. Energy Combust. Sci. 67 88 114 2018 10.1016/j.pecs.2018.02.003
  18. Eyal , A. , and Tartakovsky , L. Second-law Analysis of the Reforming-controlled Compression Ignition Appl. Energy 263 114622 2020 10.1016/j.apenergy.2020.114622
  19. Poran , A. , Thawko , A. , Eyal , A. , and Tartakovsky , L. Direct Injection Internal Combustion Engine with High-Pressure Thermochemical Recuperation-Experimental Study of the First Prototype Int. J. Hydrogen Energy 43 11969 11980 2018 10.1016/j.ijhydene.2018.04.190
  20. Thawko , A. , Yadav , H. , Eyal , A. , Shapiro , M. et al. Particle Emissions of Direct Injection Internal Combustion Engine Fed with a Hydrogen-Rich Reformate Int. J Hydrogen Energy 44 28342 28356 2019 10.1016/j.ijhydene.2019.09.062
  21. Chuahy , F.D. , and Kokjohn , S.L. Solid Oxide Fuel Cell and Advanced Combustion Engine Combined Cycle: A Pathway to 70% Electrical Efficiency Appl. Energy 235 391 408 2019 10.1016/j.apenergy.2018.10.132
  22. O'hayre , R. , Cha , S.W. , Colella , W. , and Prinz , F.B. Fuel Cell Fundamentals John Wiley & Sons 2016
  23. Andresen , B. Comment on A Fallacious Argument in the Finite Time Thermodynamic Concept of Endoreversibility [J. Appl. Phys. 83, 4561 (1998)] J. Appl. Phys. 90 6557 6559 2001 10.1063/1.1415752
  24. Chen , J. , Yan , Z. , Lin , G. , and Andresen , B. On the Curzon-Ahlborn Efficiency and Its Connection with the Efficiencies of Real Heat Engines Energy Convers. Manag. 42 173 181 2001 10.1016/S0196-8904(00)00055-8
  25. Ocampo-García , A. , Barranco-Jiménez , M.A. , and Angulo-Brown , F. Thermodynamic and Thermoeconomic Optimization of Coupled Thermal and Chemical Engines by Means of an Equivalent Array of Uncoupled Endoreversible Engines Eur. Phys. J. Plus 133 342 2018 10.1140/epjp/i2018-12158-y
  26. Heywood , J.B. Combustion Engine Fundamentals New York, NY, USA McGraw-Hill 1988 674
  27. Kulikovsky , A.A. A Model for SOFC Anode Performance Electrochimica Acta 54 26 6686 6695 2009 10.1016/j.electacta.2009.06.054

Cited By