This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Object Segmentation and Augmented Visualization Based on Panoramic Image Segmentation
Technical Paper
2021-01-0089
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Panoramic images can provide critical information for Advanced Driving Assistance Systems (ADAS), such as parking spaces and surrounding vehicles. However, the vehicle in the bird's-eye view image is severely distorted and incomplete, and the visual information becomes very blurred in some illumination insufficient environments. If the driver cannot see the surrounding environment information, the risk of collision will increase, especially during parking. To better percept the local environment with the help of panoramic images, we use panoramic image segmentation results to construct a virtual surround view monitoring system to provide drivers with clearer perception information. Firstly, a lightweight segmentation network is redesigned based on SegNet, which will improve the accuracy of the segmentation without increasing the model’s inference time. Secondly, we build an augment visualization around view monitor (AV-AVM) system with regards to the segmentation results. All necessary segmentation results will be presented as augmented visualization in AV-AVM systems, such as parking slots and road markings. Compared with the traditional panoramic system, the virtual panoramic surround view system we designed can provide the driver with more intuitive environmental perception information and can be further used to construct an automatic parking map.
Authors
Citation
Liao, J., Cao, L., Gong, Y., Zhao, J. et al., "Object Segmentation and Augmented Visualization Based on Panoramic Image Segmentation," SAE Technical Paper 2021-01-0089, 2021, https://doi.org/10.4271/2021-01-0089.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Liu , Y. and Zhang , B. Photometric Alignment for Surround view Camera System 2014 IEEE Int. Conf. Image Process. ICIP 2014 1827 1831 2014 10.1109/ICIP.2014.7025366
- Zhang , B. , Appia , V. , Pekkucuksen , I. , Liu , Y. et al. A Surround View Camera Solution for Embedded Systems IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 676 681 2014 10.1109/CVPRW.2014.103
- Choi , D.Y. , Choi , J.H. , Choi , J. , and Song , B.C. Sharpness Enhancement and Super-Resolution of Around-View monitor Images IEEE Trans. Intell. Transp. Syst. 19 8 2650 2662 2018 10.1109/TITS.2017.2762406
- Cireşan , D.C. , Giusti , A. , Gambardella , L.M. , and Schmidhuber , J. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images Adv. Neural Inf. Process. Syst. 4 2843 2851 2012
- Neven , D. , De Brabandere , B. , Georgoulis , S. , Proesmans , M. , and Van Gool , L. Towards End-to-End Lane Detection: An Instance Segmentation Approach IEEE Intell. Veh. Symp. Proc . 2018-June 286 291 2018 10.1109/IVS.2018.8500547
- Zou , Q. , Jiang , H. , Dai , Q. , Yue , Y. et al. Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks IEEE Trans. Veh. Technol. 69 1 41 54 2020 10.1109/TVT.2019.2949603
- Zhang , W. , and Mahale , T. End to End Video Segmentation for Driving : Lane Detection For Autonomous Car CoRR arXiv:1812.05914 2018
- Lin , T.Y. , Maire , M. , Belongie , S. , Hays , J. et al. Microsoft COCO: Common Objects in Context Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 8693 LNCS(PART 5) 740 755 2014 10.1007/978-3-319-10602-1_48
- Kirillov , A. , He , K. , Girshick , R. , Rother , C. , and Dollar , P. Panoptic Segmentation Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit . 2019-June 9396 9405 2019 10.1109/CVPR.2019.00963
- Hou , Q. , Zhang , L. , Cheng , M.-M. , and Feng , J. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing CVPR 4002 4011 2020 10.1109/cvpr42600.2020.00406
- Li , X. , Zhong , Z. , Wu , J. , Yang , Y. et al. Expectation-Maximization Attention Networks for Semantic Segmentation Proc. IEEE Int. Conf. Comput. Vis 2019 Octob 9166 9175 2019 10.1109/ICCV.2019.00926
- Targ , S. , Almeida , D. , and Lyman , K. Resnet in Resnet: Generalizing Residual Architectures ArXiv Prepr. ArXiv1603.08029 1 7 2016
- Simonyan , K. and Zisserman , A. Very Deep Convolutional Networks for Large-Scale Image Recognition 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc . 1 12 2015
- Huang , G. , Liu , Z. , Van Der Maaten , L. , and Weinberger , K.Q. Densely Connected Convolutional Networks Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 9781538604571 2261 2269 2017 10.1109/CVPR.2017.243
- Badrinarayanan , V. , Kendall , A. , and Cipolla , R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation IEEE Trans. Pattern Anal. Mach. Intell. 39 12 2481 2495 2017 10.1109/TPAMI.2016.2644615
- Paszke , A. , Chaurasia , A. , Kim , S. , and Culurciello , E. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation ArXiv Prepr.ArXiv1606.02147 1 10 2016
- Romera , E. , Alvarez , J.M. , Bergasa , L.M. , and Arroyo , R. ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation IEEE Trans. Intell. Transp. Syst. 19 1 263 272 2018 10.1109/TITS.2017.2750080
- Yu , F. and Koltun , V. Multi-Scale Context Aggregation by Dilated Convolutions 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings 2016
- Mehta , S. , Rastegari , M. , Caspi , A. , Shapiro , L. , and Hajishirzi , H. ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation Springer International Publishing 9783030012489 2018 10.1007/978-3-030-01249-6_34
- Wu , T. , Tang , S. , Zhang , R. , and Zhang , Y. CGNet: A Light-Weight Context Guided Network for Semantic Segmentation ArXiv Prepr.ArXiv1811.08201 2018
- Deng , J. , Dong , W. , Richard , S. et al. ImageNet : A Large-Scale Hierarchical Image Database 2009 IEEE Conf. Comput. Vis. Pattern Recognit 248 255 2009 10.1109/CVPR.2009.5206848
- Xie , S. , and Tu , Z. Holistically-Nested Edge Detection Int. J. Comput. Vis. 125 1-3 3 18 2017 10.1007/s11263-017-1004-z
- Li , G. and Yu , Y. Deep Contrast Learning for Salient Object Detection Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit . 2016-Decem 478 487 2016 10.1109/CVPR.2016.58
- Hou , Q. , Cheng , M.M. , Hu , X. , Borji , A. et al. Deeply Supervised Salient Object Detection with Short Connections IEEE Trans. Pattern Anal. Mach. Intell. 41 4 815 828 2019 10.1109/TPAMI.2018.2815688
- Dahl , G.E. , Yu , D. , Member , S. , Deng , L. , and Acero , A. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition 20 1 30 42 2012
- Duchi , J. , Hazan , E. , and Y.S. Adaptive Subgradient Methods for Online Learningand Stochastic Optimization J. Mach. Learn. Res. 12 7 2121 2159 2011
- Lee , C.Y. , Xie , S. , Gallagher , P.W. , Zhang , Z. , and Tu , Z. Deeply-Supervised Nets J. Mach. Learn. Res. 38 562 570 2015
- Wang , L. , Lee , C.-Y. , Tu , Z. , and Lazebnik , S. Training Deeper Convolutional Networks with Deep Supervision ArXiv Prepr.ArXiv1505.02496 2015
- Zhou , Z. , Rahman Siddiquee , M.M. , Tajbakhsh , N. , and Liang , J. Unet++: A Nested U-Net Architecture for Medical Image Segmentation Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 11045 LNCS 3 11 2018 10.1007/978-3-030-00889-5_1.
- Berman , M. , Triki , A.R. , and Blaschko , M.B. The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 9781538664209 4413 4421 2018 10.1109/CVPR.2018.00464
- Wu , Y. , Yang , T. , Zhao , J. , Guan , L. , and Jiang , W. VH-HFCN based Parking Slot and Lane Markings Segmentation on Panoramic Surround View IEEE Intell. Veh. Symp. Proc 2018 June 1767 1772 2018 10.1109/IVS.2018.8500553
- Zheng , J. , Sun , T. , Jiang , X. , and He , P. Fully Combined Convolutional Network with Soft Cost Function for Traffic Scene Parsing 1 July 471 482 2017 10.1007/978-3-319-63309-1
- Yang , T. , Wu , Y. , Zhao , J. , and Guan , L. Semantic Segmentation via Highly Fused Convolutional Network with Multiple Soft Cost Functions Cogn. Syst. Res. 53 20 30 2019 10.1016/j.cogsys.2018.04.004
- Jiang , W. , Wu , Y. , Guan , L. , and Zhao , J. DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and Residual Fusion Block Proc. - IEEE Int. Conf. Robot. Autom 2019 May 5887 5892 2019 10.1109/ICRA.2019.8794476