This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Material Selection for a Turbocharger Centrifugal Compressor Wheel
Technical Paper
2020-01-5066
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
Automotive Technical Papers
Language:
English
Abstract
This paper aims at providing an analysis for the proper selection of the materials of the turbocharger’s impellers that fully satisfy the essential operation requirements in terms of attaining the highest volumetric efficiency (lowest possible tip clearance) and withstanding stresses at varying loading conditions. For that purpose, considerations are given to investigation of the resulting stresses, strains, and displacements resulting from the on-wheel centrifugal, aerodynamic, and thermal loading conditions. The study is based on both a mathematical and a finite element analysis (FEA). Fatigue life assessment of the compressor wheel is also investigated in an attempt to determine its durability (lifetime assessment) by comparing the stress analysis results obtained for three different aluminum alloys, namely (AA 2618, Ti-6Al-4V, and C355). Based on the results analysis, Ti-6Al-4V operates for infinite lifetime showing the lowest displacement. Thus, it is suitable for critical applications like marine, petroleum industries, and military equipment. Aluminum alloy C355 shows nearly infinite lifetime operation and the highest value of displacement, making it suitable for predetermined fixed loads. Finally, aluminum alloy AA2618 will operate for a limited lifetime with a relatively low displacement, which makes it recommended for varying loading conditions as in heavy engine equipment.
Authors
Citation
Emara, A., Soliman, M., Monieb, H., and Abdelrazek, S., "Material Selection for a Turbocharger Centrifugal Compressor Wheel," SAE Technical Paper 2020-01-5066, 2020, https://doi.org/10.4271/2020-01-5066.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 |
Also In
References
- Wang , G.C. , Li , J.F. , Jia , X.J. , Li , F.Y. et al. Study on Erosion Behavior and Mechanism of Impeller’s Material FV520B in Centrifugal Compressor J. Mech. Eng. 50 182 2014
- Luo , S. , and Wu , S. Fatigue Failure Analysis of Rotor Compressor Blades Concerning the Effect of Rotating Stall and Surge Engineering Failure Analysis 68 1 9 2016
- Aksoy , S. , Mitlin , B. , and Borowy , H. Structural Evaluation and Testing of Swept Compressor Rotor J. Eng. Gas Turbines Power, ASME 1 217 222 1994
- Sandoval , O.R. , Fonda , M.V. , Roso , V.R. , Rodrigues da Costa , R.B. et al. Computational Technique for Turbocharger Transient Characterization Using Real Driving Conditions Data Energy 186 115822 2019
- Ramamurti , V. , and Subramani , D.A. Free Vibration Analysis of a Turbocharger Centrifuge Compressor Impeller Mech. Mach. Theory 30 619 628 1995
- Sivaprasad , S. , Narasaiah , N. , and Das , S.K. Investigation on the Failure of Air Compressor Eng. Fail. Analys. 17 150 157 2010
- Xi , N.S. , Zhong , P.D. , Huang , H.Q. , Yan , H. et al. Failure Investigation of Blade and Disk in First Stage Compressor Engineering Failure Analysis 7 385 392 2000
- Nikhil , K. , Naresh , H. , and Ramesh , J. Failure Analysis of Polymer Centrifugal Impeller: Case Studies Engineering Failure Analysis 4 1 7 2015
- Srivatsan , T.S. An Investigation of the Cyclic Fatigue and Fracture Behavior of Aluminum Alloy 7055 Mater Des 23 141 151 2002
- Moreira , M.F. Failure Analysis in Aluminum Turbocharger Wheel Engineering Failure Analysis 61 108 118 2016
- Yanbin , L. , Zhiyi , L. , Yuntao , L. , Qinkun , X. et al. Enhanced Fatigue Crack Propagation Resistance of an Al-Cu-Mg Alloy by Artificial Aging Mater Sci Eng A 492 333 336 2008
- Martín-Meizoso , A. , Martínez-Esnaola , A. , Bergara , J.M. , and Falconer , S. Fatigue Crack Growth Estimation in 3D Stress Fields Procedia Materials Science 3 15 20 2014
- Zamarripa , A.S. , Pinna , C. , Brown , M.W. , Mata , M.P.G. et al. Identification of Modes of Fracture in a 2618-T6 Aluminum Alloy Using Stereophotogrammetry Mater. Charact. 62 1141 1150 2011
- Wang , J. , Yi , D. , Su , X. , and Yin , F. Influence of Deformation Ageing Treatment on Microstructure and Properties of Aluminum Alloy 2618 Mater Charact. 59 965 968 2008
- Bardi , F. , Cabibbo , M. , and Spigarelli , S. An Analysis of Thermo-Mechanical Treatments of a 2618 Aluminum Alloy: Study of Optimum Conditions for Warm Forging Mater Sci Eng A 334 87 95 2002
- Weisshaus , I. , Gal-Or , L. , and Kaufman , A. The Effect of Microstructure on the Pitting Tendency of a Heat-Resistant Aluminium Alloy (AA 2618) Corros. Sci 20 1119 1127 1980
- Engels , B. http://www.turbos.bwauto.com/pt/press/knowledgeLibrary.aspx 2002
- Christmann , R. , Längler , F. , Habermehl , M. , Fonts , P. et al. Low-Cycle Fatigue of Turbo Charger Compressor Wheels 9th International Conference on Turbochargers Turbocharging London, UK 2010
- Yamagata , H. The science and technology of materials in automotive engines Woodhead Publishing Limited and CRC Press LLC 2005
- Liu , S. , Liu , C. , Hu , Y. , Gao , S. et al. Fatigue Life Assessment of Compressor Impeller Based of FEA Engineering Failure Analysis 60 383 390 2016
- Yubo , Z. , Binshi , X. , Haidou , W. , Pengfei , H. et al. An Experimental Analysis of Fatigue Behavior of a Welded Impeller Made by FV520B Stainless Steel in an Over-Speed Preloading Process Engineering Failure Analysis 59 111 121 2016
- Qiu , X. Japikse , D. , and Anderson , M. A Meanline Model for Impeller Flow Recirculation Proceedings of ASME Turbo Expo: Power for Land Sea and Air Berlin, Germany 2008
- Xi , G. , Wang , X.F. , Jiang , S.H. , Jia , H.X. et al. Design Method of Centrifugal Compressor Impellers Based on 3-D Viscous Flow Analysis J. Eng. ThermoPhys. 23 55 57 2002
- Liu , R.T. , Xu , Z. , and Sun , Y.S. Numerical Flow Analysis in a Centrifugal Compressor with Unshrouded Impeller and Diffuser Chin. J. Appl. Mech. 1 82 85 2004
- Soliman , M.I. , Emara , A.A. , Abdel Razek , E.M. , and Moneib , H.A. Modeling and CFD Analysis of Air Flow through Automotive Turbocharger Compressor: Analytical Approach and Validation 17th International Conference on Aerospace Sciences & Aviation Technology Cairo, Egypt 2017
- Raja , T. , Rajasekar , R. , Siva , R. , Karthik , N.N. et al. Redesigning of the Diesel Engine Turbocharger Compressor Wheel to Improve the low-Cycle Fatigue International Journal of Ambient Energy 40 8 821 826 2018
- Lumm , J.A. 1966
- Gilbert , J. , Elwin , K. , and Rooy , L. Aluminum Alloy Castings: Properties, Processes, and Applications Materials Park, OH ASM International 2004
- Boyer , H.E. Atlas of Fatigue Curves Materials Park, OH ASM International 44073-0002 www.asminternational.org 1985
- Wang , S. , Wu , Y.X. , Hua , G.J. , and Tang , H.B. Study on New Correction Method of S-N Curve for Metallic Material Mater. Heat Treat. 8 35 37 2011
- Dixon , S.L. , and Hall , C.A. Fluid Mechanics and Thermodynamics of Turbomachinery Sixth Burlington Elsevier 2010
- Zhao , S.B. , and Wang , Z.B. Anti-Fatigue Design: Method and Data Beijing China Machine Press 1997