This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Gas Bubble Development in Connecting Rod Supply Systems Caused by Oil Aeration

Journal Article
2020-01-2163
ISSN: 2641-9645, e-ISSN: 2641-9645
Published September 15, 2020 by SAE International in United States
Gas Bubble Development in Connecting Rod Supply Systems Caused by Oil Aeration
Sector:
Citation: Pendovski, D., Pischinger, S., Gretzki, M., and Henaux, D., "Gas Bubble Development in Connecting Rod Supply Systems Caused by Oil Aeration," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(1):485-500, 2021, https://doi.org/10.4271/2020-01-2163.
Language: English

References

  1. Back , A. 2017
  2. Dhande , D.Y. , and Pande , D.W. Multiphase Flow Analysis of Hydrodynamic Journal Bearing Using CFD Coupled Fluid Structure Interaction Considering Cavitation Journal of King Saud University - Engineering Sciences 30 4 345 354 2018 doi.org/10.1016/j.jksues.2016.09.001
  3. Orlowsky , K. 2004
  4. Pendovski , D. , and Pischinger , S. Dynamic Oil Pressure in Connecting Rod Bearings and Their Influence on Innovative Cranktrain Technologies SAE Technical Paper 2019-01-2333 2019 https://doi.org/10.4271/2019-01-2333
  5. Maaßen , F. 1997
  6. Suzuki , S. , and Noda , T. Visualization and Measurement of Oil Flow in Oil Supply Passages in a Transparent Crankshaft R&D Review of Toyota CRDL 38 3 2003
  7. Choi , J.K. , Min , B.S. , and Han , D.C. Effect of Oil Aeration Rate on the Minimum Oil Film Thickness and Reliability of Engine Bearing SAE Technical Paper 932785 1993 https://doi.org/10.4271/932785
  8. Pöpperl , M. , Schulze , D. , Henaux , D. et al. Two-Step Variable Compression Ratio System—Integration and Industrialization MTZ Worldwide 81 50 53 2020 https://doi.org/10.1007/s38313-019-0165-2
  9. Mane , P. , Pendovski , D. , Sonnen , S. , Uhlmann , A. et al. Coupled Dynamic Simulation of Two Stage Variable Compression Ratio (VCR) Connecting Rod Using Virtual Dynamics SAE Int. J. Adv. & Curr. Prac. in Mobility 1 1 38 44 2019 https://doi.org/10.4271/2019-26-0031
  10. Will , D. , and Gebhardt , N. Hydraulik Berlin, Heidelberg Springer Berlin Heidelberg 2014
  11. Theisen , P. , Hammermueller , B. , Hanciogullari , D. , and Orlowsky , K. Gas Content in Lubricants of Modern Powertrain Systems - Development of a Continuous Volumetric Measurement Method SAE Technical Paper 2019-01-0305 2019 https://doi.org/10.4271/2019-01-0305
  12. Kratschun , F. , Mielke , T. , and Schmitz , K. Water Vapour Cavitation in Hydraulic Fluids Proceedings of the BATH/ASME 2018 Symposium on Fluid Power and Motion Control. BATH/ASME 2018 Symposium on Fluid Power and Motion Control Bath, UK 2018 https://doi.org/10.1115/FPMC2018-8872
  13. Baehr , H.D. and Stephan , K. Wärme- und Stoffübertragung 9., aktualisierte Auflage Springer Vieweg 2016
  14. Fischer , S. 2001
  15. Voroney , R.P. and Heck , R.J. Chapter 2: The Soil Habitat Paul , E.A Soil Microbiology, Ecology and Biochemistry Fourth Edition Academic Press 2015 15 39 https://doi.org/10.1016/B978-0-12-415955-6.00002-5
  16. Epstein , P. , and Plesset , M. On the Stability of Gas Bubbles in Liquid-Gas Solutions J. Chemical Physics 18 11 1985
  17. Chuan , D. , and Yurun , F. Measurement of Diffusion Coefficients of Air in Silicone Oil and in Hydraulic Oil Chinese Journal of Chemical Engineering 2011
  18. Yuan , Y. , Tao , W. , Liu , E.A. , Barber , G.C. et al. Engine Lubrication System Analysis by Considering Aeration and Cavitation within the Rotating Oil Supply Passage Tribology Transactions 50 1 39 49 2007 10.1080/10402000600943859
  19. Koch , F. , Hardt , T. , and Haubner , F. Oil Aeration in Combustion Engines—Analysis and Optimization SAE Technical Paper 2001-01-1074 2001 https://doi.org/10.4271/2001-01-1074

Cited By