This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Multi-Cylinder Adaptation of In-Cycle Predictive Combustion Models
Technical Paper
2020-01-2087
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Adaptation of predictive combustion models for their use in in-cycle closed-loop combustion control of a multi-cylinder engine is studied in this article. Closed-loop combustion control can adjust the operation of the engine closer to the optimal point despite production tolerances, component variations, normal disturbances, ageing or fuel type. In the fastest loop, in-cycle closed-loop combustion control was proved to reduce normal variations around the operational point to increase the efficiency. However, these algorithms require highly accurate predictive models, whilst having low complexity for their implementation.
Three models were used to exemplify the proposed adaptation methods: the pilot injection’s ignition delay, the pilot burned mass, and the main injection’s ignition delay. Different approaches for the adaptation of the models are studied to obtain the demanded accuracy under the implementation constraints. Non-linear adaptation techniques are necessary for the proposed models. This was compared to a linear formulation that reduced the complexity. A reduced multi-cylinder approach is presented as a method to reduce the total number of parameters while preserving the accuracy. A method to select the parameter for the reduction is also proposed. The sensitivity of the models and the robustness of the algorithms was studied. To reduce the complexity of the model implementation, the performance of Taylor’s expansions was studied.
The methods were tested from experimental data obtained from a Scania D13 six-cylinder heavy-duty engine run with conventional diesel, rape methyl-ester (RME), and hydrotreated vegetable oil (HVO). The adaptation of the models proved to significantly improve the prediction accuracy for each of the cylinders. The average bias error is eliminated whilst the total error dispersion was halved. The results validated the reduced multi-cylinder adaptation as a method to reduce the total number of parameters and have similar prediction accuracy. Furthermore, the multi-cylinder adaptation was the most robust against measurement errors. For the ignition delay models, the sensitivity to the nominal point of linearization was under the required prediction accuracy for the in-cycle closed-loop control algorithms i.e. under the detection accuracy of 0.2CAD.
Authors
Topic
Citation
Jorques Moreno, C., Stenlaas, O., and Tunestal, P., "Multi-Cylinder Adaptation of In-Cycle Predictive Combustion Models," SAE Technical Paper 2020-01-2087, 2020, https://doi.org/10.4271/2020-01-2087.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 |
Also In
References
- Willems , F. Is Cylinder Pressure-Based Control Required to Meet Future HD Legislation? IFAC-PapersOnLine 51 111 118 2018
- Quirin , M. , Grtner , S. , Pehnt , M. , and Reinhart , G. Main Rep. 2014
- Kolbeck , A.F. Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions and NVH under Stringent Governmental Regulations SAE Technical Paper 2011-24-0171 2011 https://doi.org/10.4271/2011-24-0171
- Heywood , J.B. Internal Combustion Engines Fundamentals 6 McGraw Hill Education New York 0-07-100499-8 1988
- Jorques Moreno , C. , Stenlåås , O. , and Tunestål , P. In-Cycle Closed-Loop Combustion Control with Pilot-Main Injections for Maximum Indicated Efficiency IFAC-PapersOnLine 51 31 92 98 2018
- Jorques Moreno , C. , Stenlaas , O. , Tunestal , P. , Stenlåås , O. , and Tunestål , P. Cylinder Pressure based Virtual Sensor for In-Cycle Pilot Mass Estimation SAE Int. J. Engines 11 6 1167 1182 2018 10.4271/2018-01-1163
- Muric , K. , Stenlåås , O. , Tunestål , P. , and Johansson , B. A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback SAE Technical Paper 2013-01-2603 2013 https://doi.org/10.4271/2013-01-2603
- Jorques Moreno , C. , Stenlåås , O. , and Tunestål , P. Thiesel 2018
- Klein , M. and Eriksson , L.
- Tunestål , P. Dep. Heat Power Eng. Lund Inst. Technol. 2001
- Di Leo , R. Methodologies for Air-Fuel ratio and Trapped Mass Estimation in Diesel Engines Using the In-Cylinder Pressure Measurement Energy Procedia 82 82 957 964 2015 10.1016/j.egypro.2015.11.850
- Finesso , R. , and Spessa , E. A Control-Oriented Approach to Estimate the Injected Fuel Mass on the Basis of the Measured In-Cylinder Pressure in Multiple Injection Diesel Engines Energy Convers. Manag. 105 54 70 2015 10.1016/j.enconman.2015.07.053
- Tschanz , F. , Amstutz , A. , Onder , C.H. , and Guzzella , L. Feedback Control of Particulate Matter and Nitrogen Oxide Emissions in Diesel Engines Control Eng. Pract. 2013 10.1016/j.conengprac.2012.09.014
- Johansson , R. System Modeling and Identification Prentice Hall 1993 9780134823089
- Daum , F.E. Extended Kalman Filters Encyclopedia of Systems and Control London Springer 2015 411 413 10.1007/978-1-4471-5058-9_62
- Christopher Frey , H. , and Patil , S.R. Identification and Review of Sensitivity Analysis Methods Risk Anal. 22 3 553 578 2002 10.1111/0272-4332.00039
- Carlos , J.M. , Stenlaas , O. , and Tunestal , P. 2019 10.4271/2019-24-0017
- Jorques Moreno , C. , Stenlåås , O. , and Tunestål , P. Investigation of Small Pilot Combustion in a Heavy-Duty Diesel Engine SAE Int. J. Engines 10 3 2017-1-718 2017 10.4271/2017-01-0718
- Finesso , R. , and Spessa , E. Ignition Delay Prediction of Multiple Injections in Diesel Engines Fuel 119 170 190 2014 10.1016/j.fuel.2013.11.040
- Ingesson , G. , Yin , L. , Johansson , R. , and Tunestål , P. An Investigation on Ignition-Delay Modelling for Control Int. J. Powertrains 6 3 282 2017 10.1504/IJPT.2017.087895