Open Access

Characterization of Brake Creep Groan Vibrations

Journal Article
2020-01-1505
ISSN: 2641-9645, e-ISSN: 2641-9645
Published September 30, 2020 by SAE International in United States
Characterization of Brake Creep Groan Vibrations
Sector:
Citation: Fischer, P., Pürscher, M., Huemer-Kals, S., and Prezelj, J., "Characterization of Brake Creep Groan Vibrations," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(2):1049-1058, 2021, https://doi.org/10.4271/2020-01-1505.
Language: English

Abstract:

Creep groan is an annoying brake noise at very low speeds of the vehicle. In general, stick-slip between brake disk and brake pads is believed to be the most dominating vibration mechanism of creep groan phenomena. This paper will show by sophisticated measurement techniques that stick-slip and speed-dependent friction is an important trigger. However, the overall vibration is much more complex than stick-slip reproduced by simple conveying belt minimal models. It turns out that in typical brake systems of passenger cars, creep groan appears from 15 to 25 Hz as well as 60 to 100 Hz. The mechanism from 15 to 25 Hz is highly impulsive and “hard”. Transitions between stick and slip phases trigger coupled nonlinear vibrations of the complete brake and suspension system. From 60 to 100 Hz, the vibrations show a more harmonic-like and “soft” signature, caused mainly by a speed-dependent friction behavior. Basically, the growth of self-excited vibrations is stimulated by flexibilities in the suspension bushings as well as elastic deformations of suspension parts, wheel and tire. For practical vehicle operating conditions, the frequency range from 60 to100 Hz is the most relevant one. The 15 to 25 Hz nonlinear vibrations are frequently not detected, because these creep groan phenomena require high brake pressures. This fact often leads to inappropriate model reductions, focusing on the pads-disk subsystem for a simulation of just one vibration state. To completely address the physical nature of the vibrating system, large-scale models of the entire suspension system - including wheel, brake, link arms and bushings - are used within this work. Thus, existence and properties of bifurcating vibration states are revealed and the study of “hard” and “soft” creep groan characteristics is possible.