This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve ϕ-Sensitivity, RON and Octane Sensitivity

Journal Article
2020-01-1136
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve ϕ-Sensitivity, RON and Octane Sensitivity
Sector:
Citation: Lopez Pintor, D., Dec, J., and Gentz, G., "Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve ϕ-Sensitivity, RON and Octane Sensitivity," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(4):2196-2216, 2020, https://doi.org/10.4271/2020-01-1136.
Language: English

References

  1. Zhao , F. , Assanis , D.N. , Asmus , T.N. , Dec , J.E. et al. Homogeneous Charge Compression Ignition (HCCI) Engines Warrendale, PA SAE International 2003
  2. Dec , J.E. Advanced Compression-Ignition Engines-Understanding the In-Cylinder Processes Proceedings of the Combustion Institute 32 2 2727 2742 Jan. 2009 10.1016/j.proci.2008.08.008
  3. Dec , J.E. Advanced Compression-Ignition Combustion for High Efficiency and Ultra-Low NOX and Soot Encyclopedia of Automotive Engineering John Wiley & Sons 2014 doi.org/10.1002/9781118354179.auto121
  4. Lopez Pintor , D. , Dec , J. , and Gentz , G. ϕ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property SAE Technical Paper 2019-01-0961 Apr. 2019 https://doi.org/10.4271/2019-01-0961
  5. Sjöberg , M. and Dec , J.E. Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels SAE Technical Paper 2006-01-0629 2006 https://doi.org/10.4271/2006-01-0629
  6. Wada , Y. and Senda , J. Demonstrating the Potential of Mixture Distribution Control for Controlled Combustion and Emissions Reduction in Premixed Charge Compression Ignition Engines SAE Technical Paper 2009-01-0498 2009 https://doi.org/10.4271/2009-01-0498
  7. Dahl , D. , Andersson , M. , Berntsson , A. , Denbratt , I. , and Koopmans , L. Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap SAE Technical Paper 2009-01-1785 2009 https://doi.org/10.4271/2009-01-1785
  8. Dec , J.E. and Sjöberg , M. Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control SAE Technical Paper 2004-01-0557 2004 https://doi.org/10.4271/2004-01-0557
  9. Gentz , G. , Dernotte , J. , Ji , C. , Lopez Pintor , D. , and Dec , J. Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates SAE Technical Paper 2019-01-1156 Apr. 2019 https://doi.org/10.4271/2019-01-1156
  10. Dec , J.E. , Yang , Y. , and Dronniou , N. Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline SAE Int. J. Engines 4 1 1169 1189 2011 https://doi.org/10.4271/2011-01-0897
  11. Yang , Y. , Dec , J. , and Dronniou , N. Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges SAE Int. J. Engines 5 3 1075 1088 2012 https://doi.org/10.4271/2012-01-1120
  12. Yang , Y. , Dec , J.E. , Dronniou , N. , and Sjöberg , M. Tailoring HCCI Heat Release Rates with Partial Fuel Stratification: Comparison of Two-Stage and Single-Stage Ignition Fuels Proceedings of the Combustion Institute 33 3047 3055 2011 https://doi.org/10.1016/j.proci.2010.06.114
  13. Yang , Y. , Dec , J.E. , Dronniou , N. , Sjöberg , M. , and Cannella , W. Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels SAE Int. J. Engines 4 1 1903 1920 2011 https://doi.org/10.4271/2011-01-1359
  14. Dec , J.E. , Hwang , W. , and Sjöberg , M. An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging SAE Technical Paper 2006-01-1518 2006 https://doi.org/10.4271/2006-01-1518
  15. Dec , J.E. and Yang , Y. Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline SAE Int. J. Engines 3 1 750 767 2010 https://doi.org/10.4271/2010-01-1086
  16. Sjöberg , M. and Dec , J.E. Comparing Late-Cycle Autoignition Stability for Single- and Two-Stage Ignition Fuels in HCCI Engines Proceedings of the Combustion Institute 31 2 2895 2902 Jan. 2007 10.1016/j.proci.2006.08.010
  17. Lee , K. , Cho , S. , Kim , N. , and Min , K. A Study on Combustion Control and Operating Range Expansion of Gasoline HCCI Energy 91 1038 1048 2015 https://doi.org/10.1016/j.energy.2015.08.031
  18. Li , C. , Yin , L. , Shamun , S. , Tuner , M. et al. Transition from HCCI to PPC: The Sensitivity of Combustion Phasing to the Intake Temperature and the Injection Timing with and without EGR SAE Technical Paper 2016-01-0767 2016 https://doi.org/10.4271/2016-01-0767
  19. Shen , M. , Tuner , M. , Johansson , B. , Tunestal , P. , and Pagels , J. Influence of Injection Timing on Exhaust Particulate Matter Emissions of Gasoline in HCCI and PPC SAE Technical Paper 2016-01-2300 2016 https://doi.org/10.4271/2016-01-2300
  20. Shen , M. , Lonn , S. , and Johansson , B. Transition from HCCI to PPC Combustion by Means of Start of Injection SAE Technical Paper 2015-01-1790 Sep. 2015 https://doi.org/10.4271/2015-01-1790
  21. Vedharaj , S. et al. Combustion Homogeneity and Emission Analysis during the Transition from CI to HCCI for FACE I Gasoline SAE Technical Paper 2017-01-2263 Oct. 2017 https://doi.org/10.4271/2017-01-2263
  22. An , Y. , Mubarak Ali , M. , Vallinayagam , R. , AlRamadan , A. et al. Compression Ignition of Low Octane Gasoline under Partially Premixed Combustion Mode SAE Technical Paper 2018-01-1797 Sep. 2018 https://doi.org/10.4271/2018-01-1797
  23. Sellnau , M. , Moore , W. , Sinnamon , J. , Hoyer , K. et al. GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions SAE Int. J. Engines 8 2 775 790 Apr. 2015 https://doi.org/10.4271/2015-01-0834
  24. Sellnau , M. , Hoyer , K. , Moore , W. , Foster , M. et al. Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions SAE Technical Paper 2018-01-0901 Apr. 2018 https://doi.org/10.4271/2018-01-0901
  25. Dec , J.E. , Gentz , G. , and Lopez Pintor , D. Low-Temperature Gasoline Combustion (LTGC) Engine Research U.S. Department of Energy Vehicle Technologies Office 2017 Annual Merit Review and Peer Evaluation Meeting Vehicle Technologies Office 2018
  26. Dec , J.E. , Gentz , G. , and Lopez Pintor , D. Low-Temperature Gasoline Combustion (LTGC) Engine Research U.S. Department of Energy Vehicle Technologies Office 2017 Annual Merit Review and Peer Evaluation Meeting Washington, D.C. 2019
  27. Ghosh , P. Predicting the Effect of Cetane Improvers on Diesel Fuels Energy Fuels 22 2 1073 1079 Mar. 2008 https://doi.org/10.1021/ef0701079
  28. Hanson , R. , Kokjohn , S. , Splitter , D. , and Reitz , R.D. Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load SAE Int. J. Engines 4 1 394 411 Apr. 2011 https://doi.org/10.4271/2011-01-0361
  29. Kaddatz , J. , Andrie , M. , Reitz , R.D. , and Kokjohn , S. Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver SAE Technical Paper 2012-01-1110 Apr. 2012 https://doi.org/10.4271/2012-01-1110
  30. Dempsey , A.B. , Walker , N.R. , and Reitz , R.D. Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion SAE Int. J. Fuels Lubr. 6 1 170 187 Apr. 2013 https://doi.org/10.4271/2013-01-1678
  31. Hosseini , V. , Neill , W.S. , Guo , H. , Chippior , W.L. et al. Effects of Different Cetane Number Enhancement Strategies on HCCI Combustion and Emissions International Journal of Engine Research 12 2 89 108 2011 https://doi.org/10.1177/1468087410395873
  32. Ji , C. , Dec , J.E. , Dernotte , J. , and Cannella , W. Effect of Ignition Improvers on the Combustion Performance of Regular-Grade E10 Gasoline in an HCCI Engine SAE Int. J. Engines 7 2 790 806 Apr. 2014 https://doi.org/10.4271/2014-01-1282
  33. Ji , C. , Dec , J. , Dernotte , J. , and Cannella , W. Boosted Premixed-LTGC/HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm SAE Int. J. Engines 9 4 Oct. 2016 https://doi.org/10.4271/2016-01-2295
  34. Gentz , G. , Dernotte , J. , Ji , C. , and Dec , J. Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine - Effects of Equivalence Ratio and Intake Boost SAE Technical Paper 2018-01-1252 Apr. 2018 https://doi.org/10.4271/2018-01-1252
  35. Hwang , W. , Dec , J.E. , and Sjöberg , M. Spectroscopic and Chemical-Kinetic Analysis of the Phases of HCCI Autoignition and Combustion for Single- and Two-Stage Ignition Fuels Combustion and Flame 154 387 409 2008 https://doi.org/10.1016/j.combustflame.2008.03.019
  36. Dec , J.E. and Sjöberg , M. A Parametric Study of HCCI Combustion - The Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection SAE Technical Paper 2003-01-0752 2003 https://doi.org/10.4271/2003-01-0752
  37. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
  38. Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Technical Paper 670931 1967 https://doi.org/10.4271/670931
  39. Eng , J.A. Characterization of Pressure Waves in HCCI Combustion SAE Technical Paper 2002-01-2859 Oct. 2002 https://doi.org/10.4271/2002-01-2859
  40. Dernotte , J. , Dec , J.E. , and Ji , C. Energy Distribution Analysis in Boosted HCCI-like/LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency SAE Int. J. Engines 8 3 956 980 Apr. 2015 https://doi.org/10.4271/2015-01-0824
  41. Petitpas , G. , Whitesides , R. , Dernotte , J. , and Dec , J. Refining Measurement Uncertainties in HCCI/LTGC Engine Experiments SAE Technical Paper 2018-01-1248 2018 https://doi.org/10.4271/2018-01-1248
  42. Dec , J.E. , Yang , Y. , Dernotte , J. , and Ji , C. Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC) SAE Int. J. Engines 8 3 935 955 2015 https://doi.org/10.4271/2015-01-0813
  43. Dec , J.E. , Dernotte , J. , and Ji , C. Increasing the Load Range, Load-to-Boost Ratio, and Efficiency of Low-Temperature Gasoline Combustion (LTGC) Engines SAE Int. J. Engines 10 3 1256 1274 Mar. 2017 https://doi.org/10.4271/2017-01-0731
  44. A. P. I. H. R. Project, A. P. I. R. Project 45, and O. S. U. R. Foundation 1941
  45. Mehl , M. et al. A Comprehensive Detailed Kinetic Mechanism for the Simulation of Transportation Fuels US Sections of the Combustion Institute 2017
  46. Priyadarshini , P. , Sofianopoulos , A. , Mamalis , S. , Lawler , B. , Lopez-Pintor , D. , and Dec , J.E.
  47. Dernotte , J. , Dec , J. , and Ji , C. Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy SAE Technical Paper 2017-01-0728 Mar. 2017 https://doi.org/10.4271/2017-01-0728
  48. Izadi Najafabadi , M. and Abdul Aziz , N. Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions Journal of Combustion 2013 https://doi.org/10.1155/2013/783789
  49. Sjöberg , M. , Dec , J.E. , Babajimopoulos , A. , and Assanis , D.N. Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates SAE Technical Paper 2004-01-2994 2004 https://doi.org/10.4271/2004-01-2994
  50. Zhang , R. and Sick , V. Multi-Component Fuel Imaging in a Spray-Guided Spark-Ignition Direct-Injection Engine SAE Technical Paper 2007-01-1826 Jul. 2007 https://doi.org/10.4271/2007-01-1826

Cited By