This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Further Experiments on the Effect of Bulk In-Cylinder Temperature in the Pressurized Motoring Setup Using Argon Mixtures

Journal Article
2020-01-1063
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
Further Experiments on the Effect of Bulk In-Cylinder Temperature in the Pressurized Motoring Setup Using Argon Mixtures
Sector:
Citation: Caruana, C., Farrugia, M., Sammut, G., and Pipitone, E., "Further Experiments on the Effect of Bulk In-Cylinder Temperature in the Pressurized Motoring Setup Using Argon Mixtures," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(4):2142-2155, 2020, https://doi.org/10.4271/2020-01-1063.
Language: English

References

  1. Knauder , C. , Allmaier , H. , Salhofer , S. , and Sams , T. The Impact of Running-In on the Friction of an Automotive Gasoline Engine and in Particular on Its Piston Assembly and Valve Train Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 232 6 749 756 2017
  2. Pike , W.C. and Spillman , D.T. The Use of a Motored Engine to Study Piston-Ring Wear and Engine Friction Proceedings of the Institution of Mechanical Engineers 178 14 37 44 1963
  3. Caruana , C. , Farrugia , M. , and Sammut , G. The Determination of Motored Engine Friction by Use of Pressurized ‘Shunt’ Pipe between Exhaust and Intake Manifolds SAE Technical Paper 2018-01-0121 2018 https://doi.org/10.4271/2018-01-0121
  4. Caruana , C. , Farrugia , M. , Sammut , G. , and Pipitone , E. Further Experimental Investigation of Motored Engine Friction Using Shunt Pipe Method SAE Technical Paper 2019-01-0930 2019 https://doi.org/10.4271/2019-01-0930
  5. Caruana , C. , Farrugia , M. , Sammut , G. , and Pipitone , E. Experimental Investigation on the Use of Argon to Improve FMEP Determination through Motoring Method SAE Technical Paper 2019-24-0141 2019 https://doi.org/10.4271/2019-24-0141
  6. https://dl.airtable.com/.attachments/e9338953b17122077ebff9a29bb5ad23/a0ec6abf/Corporate_Capabilities_Presentation_Jan_2016.pdf
  7. Nanigian , J. and Nanigian , D. A Unique Thermocouple Used to Measure: Squibs, Ignitors, Propellants, and Rocket Nozzles Nanmac Holliston https://dl.airtable.com/.attachments/00993a07cca1d6b969c6dfb2b66431a2/ac50042b/eroding-thermocouple.pdf
  8. Pipitone , E. , Beccari , A. , and Beccari , S. The Experimental Validation of a New Thermodynamic Method for TDC Determination SAE Technical Paper 2007-24-0052 2007 https://doi.org/10.4271/2007-24-0052
  9. Pipitone , E. and Beccari , A. Determination of TDC in Internal Combustion Engines by a Newly Developed Thermodynamic Approach Applied Thermal Engineering 30 1914 1926 2010
  10. Davis , R. and Patterson , G. Cylinder Pressure Data Quality Checks and Procedures to Maximize Data Accuracy SAE Technical Paper 2006-01-1346 2006 https://doi.org/10.4271/2006-01-1346
  11. Tunestal , P. Model Based TDC Offset Estimation from Motored Cylinder Pressure Data Proceedings of the 2009 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, Rueil-Malmaison France Nov 30-Dec 2 2009 241 247
  12. Gopujkar , S. , Worm , J. , and Robinette , D. Methods of Pegging Cylinder Pressure to Maximize Data Quality SAE Technical Paper 2019-01-0721 2019 https://doi.org/10.4271/2019-01-0721
  13. Randolph , A. Methods of Processing Cylinder-Pressure Transducer Signals to Maximize Data Accuracy SAE Technical Paper 900170 1990 https://doi.org/10.4271/900170
  14. Richardson , D.E. Review of Power Cylinder Friction for Diesel Engines Transactions of the ASME 122 2000
  15. Kovach , J. , Tsakiris , E. , and Wong , L. Engine Friction Reduction for Improved Fuel Economy SAE Technical Paper 820085 1982 https://doi.org/10.4271/820085
  16. Caruana , C. , Farrugia , M. , Sammut , G. , and Pipitone , E. One-Dimensional Simulation of the Pressurized Motoring Method: Friction, Blow-by, Temperatures and Heat Transfer Analysis Internal Combustion Engines and Powertrain Systems for Future Transport West Midlands December 11-12, 2019
  17. Uras , H. and Patterson , D. Measurement of Piston and Ring Assembly Friction Instantaneous IMEP Method SAE Technical Paper 830416 1983 https://doi.org/10.4271/830416
  18. Buttsworth , D.R. , Stevens , R. , and Stone , R.C. Eroding Ribbon Thermocouples: Impulse Response and Transient Heat Flux Analysis Measurement Science and Technology 2005
  19. Hendricks , T. and Ghandhi , J. Estimation of Surface Heat Flux in IC Engines Using Temperature Measurements: Processing Code Effects SAE Int. J. Engines 5 3 1268 1285 2012 https://doi.org/10.4271/2012-01-1208
  20. Dao , K. , Uyehara , O. , and Myers , P. Heat Transfer Rates at Gas-Wall Interfaces in Motored Piston Engine SAE Technical Paper 730632 1973 https://doi.org/10.4271/730632
  21. Farrugia , M. Transient Surface Heat Flux Measurements in a Straight Pipe Extension of the Exhaust Port of a Spark Ignition Engine Michigan Oakland University 2005
  22. Nijeweme , D.J.O. , Kok , J.B.W. , Stone , C.R. , and Wyszynski , L. Unsteady In-Cylinder Heat Transfer in a Spark Ignition Engine: Experiments and Modelling Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 215 747 760 2001
  23. Mauke , D. , Dolt , R. , Stadler , J. , Huttinger , K. , and Bargende , M. Methods of Measuring Friction under Motored Conditions with External Charging Switzerland Kistler Group 2016
  24. Demuynck , J. , De Paepe , M. , Sileghem , L. , Vancoillie , J. et al. Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine SAE Int. J. Engines 5 3 1286 1299 2012 https://doi.org/10.4271/2012-01-1209

Cited By