This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Analysis of a Prechamber Ignited HPDI Gas Combustion Concept
Technical Paper
2020-01-0824
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used. The high-pressure gas jet is ignited with the aid of flame torches from a gas-scavenged prechamber. The design and layout of the combustion process and the prechamber shape were simulation-based. It’s predesign and validation on a single-cylinder research engine (SCE) were presented in SAE Technical Paper 2019-01-0259. More detailed results of the SCE measurements are presented and discussed in this paper. The results clearly demonstrate the high number of degrees of freedom of the prechamber ignited HPDI gas combustion concept. The publication shows investigations on the influence of injection timing, ignition timing in the prechamber and gas supply pressure. Combustion can be altered by adjusting either injection timing or ignition timing when simultaneously adjusting the other parameter. Different combinations of these parameters have a strong influence on the rate of heat release by altering the amount of high pressure gas that can premix with the cylinder charge. Potential measures for improvement are outlined. An increase in the gas injection pressure helps to increase efficiency for a constant NOx emission level. Finally, a comparison of the prechamber ignited HPDI gas combustion concept and a representative diesel combustion concept reveals that the expected properties have been met. The same combustion performance as with a diesel engine can be achieved using the prechamber ignited HPDI concept.
Authors
Topic
Citation
Zelenka, J., Kammel, G., Wimmer, A., Bärow, E. et al., "Analysis of a Prechamber Ignited HPDI Gas Combustion Concept," SAE Technical Paper 2020-01-0824, 2020, https://doi.org/10.4271/2020-01-0824.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] |
Also In
References
- Tschöke, H., Mollenhauer, K., and Maier, R. , Handbuch Dieselmotoren (Wiesbaden: Springer Vieweg, 2018).
- Friedrich, W. and Grzeszik, T. , “Mixture Formation in a CNG-DI Engine in Stratified Operation,” SAE Technical Paper 2015-24-2474, 2015, https://doi.org/10.4271/2015-24-2474.
- Merker, G. and Teichmann, R. , editors, Grundlagen Verbrennungsmotoren 8. Auflage Edition (Wiesbaden: Springer Verlag, 2014).
- Goudie, D., Dunn, M., Munshi, S.R. et al. , SAE Technical Paper 2004-01-2954, 2004, https://doi.org/10.4271/2004-01-2954.
- Faghani, E., Kheirkhah, P., Mabson, C.W. et al. , “Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine-Part II: Slightly Premixed Combustion,” SAE Technical Paper 2017-01-0763, 2017, https://doi.org/10.4271/2017-01-0763.
- McTaggart-Cowan, G., Mann, K., Huang, J. et al. , “Direct Injection of Natural Gas at up to 600 Bar in a Pilot-Ignited Heavy-Duty Engine,” SAE Int. J. Engines 8(3):981-996, 2015, https://doi.org/10.4271/2015-01-0865.
- Westport , www.westport.com, [Online], Available: https://www.westport.com/is/core-technologies/hpdi-2, [Zugriff am 05 03 2019].
- McTaggart-Cowan, G., Jones, H., Rogak, S. et al. , “The Effects of High-Pressure Injection on a Compression-Ignition, Direct Injection of Natural Gas Engine, in ASME,” J. Eng. Gas Turbines Power., April 2007.
- Aßmus, K., Redtenbacher, C., Winter, H. et al. , “Simulation Based Predesign and Validation of a Diesel Ignited High-pressure Gas Direct Injection Combustion Concept,” in Engine Combustion and Alternative Concepts - ENCOM 2019, Erlangen, 2019, 83-94.
- Wärtsilä Corporation , “Wärtsilä 32GD Technology Review,” 2009, [Online], Available: http://www.wartsila.com/file/Wartsila/en/1270037664966a1267106724867-W32GD_technology_review_2009_UK.pdf, [Zugriff am 17 05 2018].
- Mohr, H. and Frobenius, M. , “Optimierung von Diesel-/Gas-Großmotoren für unterschiedlichste Anwendungen,” . In: Die Zukunft der Großmotoren III, 3, (Rostock, Rostocker Großmotorentagung, 2014).
- Frankl, S., Gleis, S., and Wachtmeister, G. , “Interpretation of Ignition and Combustion in a Full-Optical High-Pressure-Dual-Fuel (HPDF) Engine Using 3D-CFD Methods,” in 29th CIMAC World Congress, Vancover, June 10-14, 2019.
- Simmer, L., Aschauer, G., and Schauer, O. , “LNG (Flüssigerdgas) - Einsatzmöglichkeiten und Potentiale zur Erhöhung der Flexibilität in Österreich und Zentraleuropa, in Symposium Energieinnovation, 2014, 13.
- International Gas Union , Life Cycle Assessment of LNG, 2012-2015 Triennium Work Report, 2015.
- Heidt, C., Lambrecht, U., Hardinghaus, M. et al. , CNG und LPG - Potenziale dieser Energieträger auf dem Weg zu einer nachhaltigeren Energieversorgung des Straßenverkehrs, 2013.
- Pischinger, R., Klell, M., and Sams, T. , Thermodynamik der Verbrennungskraftmaschine 3rd Edition (Wien New York: Springer, 2009).
- Trapp, C., Birgel, A., Spyra, N. et al. : GE’s All New J920 Gas Engine - A Smart Accretion of Two-Stage Turbocharging, Ultra Lean Combustion Concept and Intelligent Controls, in CIMAC World Congress, Shanghai, China, May 13-16, 2013.
- Redtenbacher, C., Kiesling, C., and Wimmer, A. , “Dual Fuel Brennverfahren - Ein zukunftsweisendes Konzept vom PKW- bis zum Großmotorenbereich,” . In: Lenz, H.P., editor, 37. Internationales Wiener Motorensymposium, (2016).
- WoodWard L'Orange , http://www.lorange.com/lorange/index.de.html, [Online], [access on 02 07 2019].
- Kammel, G., Mair, F., Zelenka, J. et al. , “Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept,” SAE Technical Paper 2019-01-0259, 2019, https://doi.org/10.4271/2019-01-0259.
- Gamma Technologies , “GT-POWER Engine Simulation Software,” 2018, [Online], Available: https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software [access on 25 4 2019].
- Dumser, F., Boog, M., Berger, I. et al. , Development of a High Pressure Dual Fuel Concept for High Speed Ship Propulsion Engines, in 11th Dessau Gas Engine Conference, Dessau-Roßlau, 2019.
- Redtenbacher, C., Aßmus, K., Lurf, G. et al. , “Detailed Assessment of an Innovative Combined Gas-Diesel Injector for Diesel Ignited High-pressure Gas Direct Injection Combustion Concepts,” in 29th CIMAC World Congress, Vancover, June 10-14, 2019.