This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines
Technical Paper
2020-01-0356
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
In this work, an after-treatment system based on the injection of gaseous ammonia in the SCR system is considered. Numerical 1D and 3D CFD simulations are applied in order to optimize the NOx reduction process. In particular, CFD methodology is applied to study in details the process of injection of the gaseous ammonia in the main exhaust gas stream and the effectiveness of the mixing process. Different geometrical layouts are compared to evaluate their performances in terms of uniformity of the NH3 distribution across the inlet section of the catalyst and pressure drop introduced in the exhaust line. Moreover, a 1D simulation tool is applied to evaluate the performances of the entire exhaust after-treatment system. The 1D model is calibrated on the basis of the information coming from detailed CFD simulations, in particular for what concerns the modeling of the effects of the different mixer geometries in terms on NH3 distribution. In this case, a simplified 3D catalyst is simulated, to take into account the maldistribution of ammonia at the inlet cross section and to evaluate its impact on the global deNOx performance of the system for different dosing strategies and for different levels of the ammonia maldistribution.
Authors
Topic
Citation
Della Torre, A., Montenegro, G., Onorati, A., Cerri, T. et al., "Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines," SAE Technical Paper 2020-01-0356, 2020, https://doi.org/10.4271/2020-01-0356.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Johnson , T. Diesel Emissions in Review SAE Int. J. Engines 4 1 143 157 2011
- Tsinoglou , D. and Koltsakis , G. Modelling of the Selective Catalytic NOx Reduction in Diesel Exhaust Including Ammonia Storage Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221 1 117 133 2007
- Tsinoglou , D. , Koltsakis , G. , and Jones , G.P. Oxygen Storage Modeling in Three-Way Catalytic Converters Industrial & Engineering Chemistry Research 41 5 1152 1165 2002
- Cerri , T. , D'Errico , G. , Montenegro , G. , Onorati , A. et al. A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions SAE Technical Paper 2019-24-0147 2019 https://doi.org/10.4271/2019-24-0147
- Della Torre , A. , Montenegro , G. , Onorati , A. , and Cerri , T. CFD Investigation of the Impact of Electrical Heating on the Light-Off of a Diesel Oxidation Catalyst SAE Technical Paper 2018-01-0961 2018 https://doi.org/10.4271/2018-01-0961
- Nova , I. and Tronconi , E. Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts New York Springer 2014
- http://www.openfoam.org/docs/
- Weller , H. , Tabor , G. , Jasak e C. , H. , and Fureby A Tensorial Approach to CFD Using Object Orientated Techniques Computers in Physics 12 6 620 1998
- Dakota https://dakota.sandia.gov/documentation.html
- Koltsakis , G. , Konstantinidis , P. , and Stamatelos , A. Development and Application Range of Mathematical Models for 3-Way Catalytic Converters Applied Catalysis B: Environmental 212 2-3 161 191 1997
- Versteeg , H. and Malalasekera , W. An Introduction to Computational Fluid Dynamics Longman Scientific & Technical 1995
- Menter , F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications AIAA Journal 32 8 1598 1605 1994