This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Effect of Changing Compression Ratio on Ignition Delay Times of Iso-Octane in a Rapid Compression Machine
Technical Paper
2020-01-0338
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Previous studies have shown that several facility dependent factors can influence ignition delay times measured in a rapid compression machine. Compression ratio variation represents one such aspect of many facility-to facility differences in RCMs, and can have a major impact on measured ignition delay times due to changes in surface-area-to-volume ratio, initial conditions and compression duration even when the same compressed conditions are maintained. In this study, iso-octane, which exhibits two stage ignition delay and has a pronounced negative temperature coefficient (NTC) region, is used to investigate the effects of changing compression ratio on ignition delay. Resulting trends are also compared to previous results obtained with ethanol, which has very different combustion properties. Experiments were carried out for rich mixtures (ϕ = 1.3) of iso-octane and air over a compressed temperature range of 675-900 K at 20 bar compressed pressure. Two compression ratios are considered for each case with initial temperature and pressure adjusted in conjunction to achieve the identical compressed condition. The compression ratio was varied from 6.8 to 17.1 which also led to changes in initial conditions, compression time and surface area-to-volume ratio, all of which together affected the ignition delay time at a given compressed condition.
Authors
Citation
Wadkar, C., Chinnathambi, P., and Toulson, E., "Effect of Changing Compression Ratio on Ignition Delay Times of Iso-Octane in a Rapid Compression Machine," SAE Technical Paper 2020-01-0338, 2020, https://doi.org/10.4271/2020-01-0338.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] |
Also In
References
- Turns, S.R. , An Introduction to Combustion: Concepts and Applications (McGraw-Hill, 1996), ISBN:978-0-07-911812-7.
- Heywood, J.B. , Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
- Pitz, W.J., Cernansky, N.P., Dryer, F.L., Egolfopoulos, F.N. et al. , “Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels,” SAE Technical Paper 2007-01-0175, 2007, https://doi.org/10.4271/2007-01-0175.
- Farrell, J.T., Cernansky, N.P., Dryer, F.L., Law, C.K. et al. , “Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels,” SAE Technical Paper 2007-01-0201, 2007, https://doi.org/10.4271/2007-01-0201.
- Edwards, T., Colket, M., Cernansky, N., Dryer, F. et al. , “Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, 2007, doi:10.2514/6.2007-770.
- Oehlschlaeger, M.A., Davidson, D.F., Herbon, J.T., and Hanson, R.K. , “Shock Tube Measurements of Branched Alkane Ignition Times and OH Concentration Time Histories,” International Journal of Chemical Kinetics 36(2):67-78, 2004, doi:10.1002/kin.10173.
- Davidson, D.F., Gauthier, B.M., and Hanson, R.K. , “Shock Tube Ignition Measurements of iso-Octane/Air and Toluene/Air at High Pressures,” Proceedings of the Combustion Institute 30(1):1175-1182, 2005, doi:10.1016/j.proci.2004.08.004.
- Shen, H.-P.S., Vanderover, J., and Oehlschlaeger, M.A. , “A Shock Tube Study of iso-Octane Ignition at Elevated Pressures: The Influence of Diluent Gases,” Combustion and Flame 155(4):739-755, 2008, doi:10.1016/j.combustflame.2008.06.001.
- Hartmann, M., Gushterova, I., Fikri, M., Schulz, C. et al. , “Auto-Ignition of Toluene-Doped n-Heptane and iso-Octane/Air Mixtures: High-Pressure Shock-Tube Experiments and Kinetics Modeling,” Combustion and Flame 158(1):172-178, 2011, doi:10.1016/j.combustflame.2010.08.005.
- Fieweger, K., Blumenthal, R., and Adomeit, G. , “Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure,” Combustion and Flame 109(4):599-619, 1997, doi:10.1016/S0010-2180(97)00049-7.
- Fieweger, K., Blumenthal, R., and Adomeit, G. , “Shock-Tube Investigations on the Self-Ignition of Hydrocarbon-Air Mixtures at High Pressures,” Symposium (International) on Combustion 25(1):1579-1585, 1994, doi:10.1016/S0082-0784(06)80803-9.
- Malewicki, T., Comandini, A., and Brezinsky, K. , “Experimental and Modeling Study on the Pyrolysis and Oxidation of iso-Octane,” Proceedings of the Combustion Institute 34(1):353-360, 2013, doi:10.1016/j.proci.2012.06.137.
- Davis, S.G. and Law, C.K. , “Laminar Flame Speeds and Oxidation Kinetics of iso-Octane-Air and n-Heptane-Air Flames,” Symposium (International) on Combustion 27(1):521-527, 1998, doi:10.1016/S0082-0784(98)80442-6.
- Bradley, D., Hicks, R.A., Lawes, M., Sheppard, C.G.W. et al. , “The Measurement of Laminar Burning Velocities and Markstein Numbers for iso-octane-Air and iso-octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,” Combustion and Flame 115(1):126-144, 1998, doi:10.1016/S0010-2180(97)00349-0.
- Galmiche, B., Halter, F., and Foucher, F. , “Effects of High Pressure, High Temperature and Dilution on Laminar Burning Velocities and Markstein Lengths of iso-Octane/Air Mixtures,” Combustion and Flame 159(11):3286-3299, 2012, doi:10.1016/j.combustflame.2012.06.008.
- Kelley, A.P., Liu, W., Xin, Y.X., Smallbone, A.J. et al. , “Laminar Flame Speeds, Non-Premixed Stagnation Ignition, and Reduced Mechanisms in the Oxidation of iso-Octane,” Proceedings of the Combustion Institute 33(1):501-508, 2011, doi:10.1016/j.proci.2010.05.058.
- Lipzig, J.P.J., Nilsson, E.J.K., Goey, L.P.H., and Konnov, A.A. , “Laminar Burning Velocities of n-Heptane, iso-Octane, Ethanol and Their Binary and Tertiary Mixtures,” Fuel 90(8):2773-2781, 2011, doi:10.1016/j.fuel.2011.04.029.
- Kumar, K., Freeh, J.E., Sung, C.J., and Huang, Y. , “Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures,” Journal of Propulsion and Power, 2012, doi:10.2514/1.24391.
- Kwon, O.C., Hassan, M.I., and Faeth, G.M. , “Flame/Stretch Interactions of Premixed Fuel-Vapor/O/N Flames,” Journal of Propulsion and Power 16(3):513-522, 2000, doi:10.2514/2.5598.
- Huang, Y., Sung, C.J., and Eng, J.A. , “Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures,” Combustion and Flame 139(3):239-251, 2004, doi:10.1016/j.combustflame.2004.08.011.
- Ji, C., Sarathy, S.M., Veloo, P.S., Westbrook, C.K. et al. , “Effects of Fuel Branching on the Propagation of Octane Isomers Flames,” Combustion and Flame 159(4):1426-1436, 2012, doi:10.1016/j.combustflame.2011.12.004.
- Liu, N., Mani Sarathy, S., Westbrook, C.K., and Egolfopoulos, F.N. , “Ignition of Non-Premixed Counterflow Flames of Octane and Decane Isomers,” Proceedings of the Combustion Institute 34(1):903-910, 2013, doi:10.1016/j.proci.2012.05.040.
- Blouch, J.D. and Law, C.K. , “Non-Premixed Ignition of n-Heptane and iso-Octane in a Laminar Counterflow,” Proceedings of the Combustion Institute 28(2):1679-1686, 2000, doi:10.1016/S0082-0784(00)80567-6.
- Dagaut, P., Reuillon, M., and Cathonnet, M. , “High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 1. n-Heptane and iso-Octane,” Combustion Science and Technology 95(1-6):233-260, 1993, doi:10.1080/00102209408935336.
- Lignola, P.G., Di Maio, F.P., Marzocchella, A., Mercogliano, R. et al. , “JSFR Combustion Processes of n-Heptane and Isooctane,” Symposium (International) on Combustion 22(1):1625-1633, 1989, doi:10.1016/S0082-0784(89)80174-2.
- D’Anna, A., Mercoguano, R., Barbella, R., and Ciajolo, A. , “Low Temperature Oxidation Chemistry of iso-Octane under High Pressure Conditions,” Combustion Science and Technology 83(4-6):217-232, 1992, doi:10.1080/00102209208951833.
- Chen, J.-S., Litzinger, T.A., and Curran, H.J. , “The Diluted Stoichiometric Oxidation of iso-Octane in the Intermediate Temperature Regime at Elevated Pressures,” Combustion Science and Technology 172(1):71-80, 2001, doi:10.1080/00102200108935838.
- Dryer, F.L. and Brezinsky, K. , “A Flow Reactor Study of the Oxidation of n-Octane and iso-Octane,” Combustion Science and Technology 45(3-4):199-212, 1986, doi:10.1080/00102208608923850.
- Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K. , “A Comprehensive Modeling Study of iso-Octane Oxidation,” Combustion and Flame 129(3):253-280, 2002, doi:10.1016/S0010-2180(01)00373-X.
- Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J. , “Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions,” Proceedings of the Combustion Institute 33(1):193-200, 2011, doi:10.1016/j.proci.2010.05.027.
- Atef, N., Kukkadapu, G., Mohamed, S.Y., Rashidi, M.A. et al. , “A Comprehensive iso-Octane Combustion Model with Improved Thermochemistry and Chemical Kinetics,” Combustion and Flame 178:111-134, 2017, doi:10.1016/j.combustflame.2016.12.029.
- Glaude, P.A., Conraud, V., Fournet, R., Battin-Leclerc, F. et al. , “Modeling the Oxidation of Mixtures of Primary Reference Automobile Fuels,” Energy Fuels 16(5):1186-1195, 2002, doi:10.1021/ef020025e.
- Di, H., He, X., Zhang, P., Wang, Z. et al. , “Effects of Buffer Gas Composition on Low Temperature Ignition of iso-Octane and n-Heptane,” Combustion and Flame 161(10):2531-2538, 2014, doi:10.1016/j.combustflame.2014.04.014.
- Zhang, P., Ji, W., He, T., He, X. et al. , “First-Stage Ignition Delay in the Negative Temperature Coefficient Behavior: Experiment and Simulation,” Combustion and Flame 167:14-23, 2016, doi:10.1016/j.combustflame.2016.03.002.
- He, X., Donovan, M.T., Zigler, B.T., Palmer, T.R. et al. , “An Experimental and Modeling Study of iso-Octane Ignition Delay Times under Homogeneous Charge Compression Ignition Conditions,” Combustion and Flame 142(3):266-275, 2005, doi:10.1016/j.combustflame.2005.02.014.
- Goldsborough, S.S. , “A Chemical Kinetically Based Ignition Delay Correlation for iso-Octane Covering a Wide Range of Conditions Including the NTC Region,” Combustion and Flame 156(6):1248-1262, 2009, doi:10.1016/j.combustflame.2009.01.018.
- Würmel, J., Silke, E.J., Curran, H.J., Ó Conaire, M.S. et al. , “The Effect of Diluent Gases on Ignition Delay Times in the Shock Tube and in the Rapid Compression Machine,” Combustion and Flame 151(1-2):289-302, 2007, doi:10.1016/j.combustflame.2007.06.010.
- Wagnon, S.W. and Wooldridge, M.S. , “Effects of Buffer Gas Composition on Autoignition,” Combustion and Flame 161(4):898-907, 2014, doi:10.1016/j.combustflame.2013.09.022.
- Walton, S., He, X., Zigler, B., Wooldridge, M. et al. , “An Experimental Investigation of iso-Octane Ignition Phenomena,” Combustion and Flame 150(3):246-262, 2007, doi:10.1016/j.combustflame.2006.07.016.
- Chinnathambi, P., Wadkar, C., Amit, S., Soumya, G. et al. , “Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine.”
- Park, P. and Keck, J. , “Rapid Compression Machine Measurements of Ignition Delay Times for Primary Reference Fuels,” SAE Technical Paper 900027, 1990, https://doi.org/10.4271/900027.
- Mittal, G. and Sung, C.-J. , “A Rapid Compression Machine for Chemical Kinetics Studies at Elevated Pressures and Temperatures,” Combustion Science and Technology 179(3):497-530, 2007, doi:10.1080/00102200600671898.
- Minetti, R., Carlier, M., Ribaucour, M., Therssen, E. et al. , “Comparison of Oxidation and Autoignition of the Two Primary Reference Fuels by Rapid Compression,” Symposium (International) on Combustion 26(1):747-753, 1996, doi:10.1016/S0082-0784(96)80283-9.
- Griffiths, J.F., Halford-Maw, P.A., and Mohamed, C. , “Spontaneous Ignition Delays as a Diagnostic of the Propensity of Aikanes to Cause Engine Knock,” 11.
- Tanaka, S., Ayala, F., Keck, J.C., and Heywood, J.B. , “Two-Stage Ignition in HCCI Combustion and HCCI Control by Fuels and Additives,” Combustion and Flame 132(1):219-239, 2003, doi:10.1016/S0010-2180(02)00457-1.
- Goldsborough, S.S., Hochgreb, S., Vanhove, G., Wooldridge, M.S. et al. , “Advances in Rapid Compression Machine Studies of Low- and Intermediate-Temperature Autoignition Phenomena,” Progress in Energy and Combustion Science 63:1-78, 2017, doi:10.1016/j.pecs.2017.05.002.
- Bradley, D., Lawes, M., and Materego, M. , “Interpretation of Auto-ignition Delay Times Measured in Different Rapid Compression Machines,” 7, 2015.
- Wadkar, C., Chinnathambi, P., and Toulson, E. , “An Experimental Study on the Factors Affecting Ethanol Ignition Delay Times in a Rapid Compression Machine,” SAE Technical Paper 2019-01-0576, 2019, https://doi.org/10.4271/2019-01-0576.
- Wadkar, C., Chinnathambi, P., and Toulson, E. , “Analysis of Rapid Compression Machine Facility Effects on the Auto-Ignition of Ethanol,” Fuel 116546, 2019, doi:10.1016/j.fuel.2019.116546.
- Davidson, D.F. and Hanson, R.K. , “Interpreting Shock Tube Ignition Data,” International Journal of Chemical Kinetics 36(9):510-523, 2004, doi:10.1002/kin.20024.
- Gentz, G., Thelen, B., Litke, P., Hoke, J. et al. , “Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine,” SAE Int. J. Engines 8(2):538-546, 2015, https://doi.org/10.4271/2015-01-0779.
- Allen, C., Toulson, E., Edwards, T., and Lee, T. , “Application of a Novel Charge Preparation Approach to Testing the Autoignition Characteristics of JP-8 and Camelina Hydroprocessed Renewable Jet Fuel in a Rapid Compression Machine,” Combustion and Flame 159(9):2780-2788, 2012, doi:10.1016/j.combustflame.2012.03.019.
- Gentz, G., Gholamisheeri, M., and Toulson, E. , “A Study of a Turbulent Jet Ignition System Fueled with iso-Octane: Pressure Trace Analysis and Combustion Visualization,” Applied Energy 189:385-394, 2017, doi:10.1016/j.apenergy.2016.12.055.
- Allen, C., Valco, D., Toulson, E., Edwards, T. et al. , “Ignition Behavior and Surrogate Modeling of JP-8 and of Camelina and Tallow Hydrotreated Renewable Jet Fuels at Low Temperatures,” Combustion and Flame 160(2):232-239, 2013, doi:10.1016/j.combustflame.2012.10.008.
- Mittal, G., Raju, M.P., and Sung, C.-J. , “Vortex Formation in a Rapid Compression Machine: Influence of Physical and Operating Parameters,” Fuel 94:409-417, 2012, doi:10.1016/j.fuel.2011.08.034.
- Allen, C. , “Advanced Rapid Compression Machine Test Methods and Surrogate Fuel Modeling for Bio-Derived Jet and Diesel Fuel Autoignition,” Michigan State University, 2012.
- Chinnathambi, P. , “Experiments on Dilution Strategies for Spark Ignition Engines Using a Rapid Compression Machine,” Michigan State University, 2019.
- Mittal, G., Raju, M.P., and Bhari, A. , “A Numerical Assessment of the Novel Concept of Crevice Containment in a Rapid Compression Machine,” Combustion and Flame 158(12):2420-2427, 2011, doi:10.1016/j.combustflame.2011.04.013.
- Javed, T., Ahmed, A., Lovisotto, L., Issayev, G. et al. , “Ignition Studies of Two Low-Octane Gasolines,” Combustion and Flame 185:152-159, 2017, doi:10.1016/j.combustflame.2017.07.006.
- Li, J., Kazakov, A., and Dryer, F.L. , “Ethanol Pyrolysis Experiments in a Variable Pressure Flow Reactor,” International Journal of Chemical Kinetics 33(12):859-867, 2001, doi:10.1002/kin.10009.
- Griffiths, J.F., Jiao, Q., Schreiber, M., Meyer, J. et al. , “Development of Thermokinetic Models for Autoignition in a CFD Code: Experimental Validation and Application of the Results to Rapid Compression Studies,” Symposium (International) on Combustion 24(1):1809-1815, 1992, doi:10.1016/S0082-0784(06)80212-2.
- Mittal, G. and Sung, C.-J. , “Aerodynamics inside a Rapid Compression Machine,” Combustion and Flame 145(1-2):160-180, 2006, doi:10.1016/j.combustflame.2005.10.019.
- Mittal, G., Sung, C.-J., and Yetter, R.A. , “Autoignition of H2/CO at Elevated Pressures in a Rapid Compression Machine,” International Journal of Chemical Kinetics 38(8):516-529, 2006, doi:10.1002/kin.20180.
- Mittal, G. and Sung, C.-J. , “Autoignition of Toluene and Benzene at Elevated Pressures in a Rapid Compression Machine,” Combustion and Flame 150(4):355-368, 2007, doi:10.1016/j.combustflame.2007.04.014.
- Mittal, G., Chaos, M., Sung, C.-J., and Dryer, F.L. , “Dimethyl Ether Autoignition in a Rapid Compression Machine: Experiments and Chemical Kinetic Modeling,” Fuel Processing Technology 89(12):1244-1254, 2008, doi:10.1016/j.fuproc.2008.05.021.
- Kumar, K., Mittal, G., and Sung, C.-J. , “Autoignition of n-Decane under Elevated Pressure and Low-to-Intermediate Temperature Conditions,” Combustion and Flame 156(6):1278-1288, 2009, doi:10.1016/j.combustflame.2009.01.009.
- Mittal, G. and Sung, C.-J. , “Autoignition of Methylcyclohexane at Elevated Pressures,” Combustion and Flame 156(9):1852-1855, 2009, doi:10.1016/j.combustflame.2009.05.009.
- Lee, D. and Hochgreb, S. , “Rapid Compression Machines: Heat Transfer and Suppression of Corner Vortex,” Combustion and Flame 114(3-4):531-545, 1998, doi:10.1016/S0010-2180(97)00327-1.
- Weber, B.W., Kumar, K., Zhang, Y., and Sung, C.-J. , “Autoignition of n-Butanol at Elevated Pressure and Low-to-Intermediate Temperature,” Combustion and Flame 158(5):809-819, 2011, doi:10.1016/j.combustflame.2011.02.005.
- Ezzell, J., Wilson, D., and Allen, C. , “On the Influence of Initial Conditions and Facility Effects on Rapid Compression Machine Data,” Fuel 245:368-383, 2019, doi:10.1016/j.fuel.2019.01.146.
- Wilson, D. and Allen, C. , “Application of a Multi-Zone Model for the Prediction of Species Concentrations in Rapid Compression Machine Experiments,” Combustion and Flame 171:185-197, 2016, doi:10.1016/j.combustflame.2016.05.018.
- Goldsborough, S.S., Mittal, G., and Banyon, C. , “Methodology to Account for Multi-Stage Ignition Phenomena during Simulations of RCM Experiments,” Proceedings of the Combustion Institute 34(1):685-693, 2013, doi:10.1016/j.proci.2012.05.094.
- Goldsborough, S.S., Banyon, C., and Mittal, G. , “A Computationally Efficient, Physics-Based Model for Simulating Heat Loss during Compression and the Delay Period in RCM Experiments,” Combustion and Flame 159(12):3476-3492, 2012, doi:10.1016/j.combustflame.2012.07.010.
- Mittal, G., Raju, M.P., and Sung, C.-J. , “Computational Fluid Dynamics Modeling of Hydrogen Ignition in a Rapid Compression Machine,” Combustion and Flame 155(3):417-428, 2008, doi:10.1016/j.combustflame.2008.06.006.