This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Towards an Integral Combustion Model for Model-Based Control of PCCI Engines
Technical Paper
2019-24-0001
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Physics-based models in a closed-loop feedback control of a premixed charge compression ignition (PCCI) engine can improve the combustion efficiency and potentially reduce harmful NOx and soot emissions. A stand-alone multi-zone combustion model has been proposed in the literature using a physics-based mixing approach. The scalar dissipation rate emerged as the determining parameter in the model for mixing among different zones in the mixture fraction space. However, the calculation of the scalar dissipation rate depends on three approaches: three-dimensional computational fluid dynamics (3-D CFD) combustion simulations based on representative interactive flamelet (RIF) model, tabulation, or an empirical algebraic model of the scalar dissipation rate fitted for the given operating conditions of the engine. While the 3-D CFD approach provides accurate results, it is computationally too expensive to use the multi-zone model in closed-loop control. Tabulation or empirical models are computationally cheap but are not physical, and hence, they limit the usability of the model to preset operating conditions. In this work, an integral model for the scalar dissipation rate based on the one-dimensional cross-sectionally averaged multi-phase spray equations is proposed as a first step towards model-based control. Due to the 1-D character of the resulting equations, time to solution is significantly reduced compared to full 3-D CFD models. The model provides distribution of fuel in the liquid and vapor phase as well as the scalar dissipation rate in physical space and time. The integral model coupled to a flamelet solver constitutes the integral combustion model, which can capture unsteady non-premixed combustion behavior. The model is able to reasonably predict ignition delay times for the Spray A case compared to 3-D CFD as well as measurements. The model can capture trends of the ignition delay time with respect to oxygen concentration as well as temperature. While the model is still not sufficiently fast for feedback control, as a physics-based stand-alone model based on the solution of partial differential equations, it will serve as a very good basis for further model reductions. The new method can also be used to generate data to train artificial neural networks that can then be used in model-based feedback control.
Recommended Content
Technical Paper | Coupled Analysis of Thermal Flow and Thermal Stress of an Engine Exhaust Manifold |
Technical Paper | Flow Field Analysis of a Carburettor Using CFD |
Authors
- Abhishek Y. Deshmukh - RWTH Aachen University
- Metin Korkmaz - RWTH Aachen University
- Marco Davidovic - RWTH Aachen University
- Dominik Goeb - RWTH Aachen University
- Carsten Giefer - RWTH Aachen University
- Mathis Bode - RWTH Aachen University
- Liming Cai - RWTH Aachen University
- Heinz Pitsch - RWTH Aachen University
Citation
Deshmukh, A., Korkmaz, M., Davidovic, M., Goeb, D. et al., "Towards an Integral Combustion Model for Model-Based Control of PCCI Engines," SAE Technical Paper 2019-24-0001, 2019, https://doi.org/10.4271/2019-24-0001.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 |
Also In
References
- Pischinger , S. Antriebsentwicklung der Zukunft ATZextra 16 6 136 141 2011
- Reif , K. Dieselmotor-Management im Überblick 2nd Springer 2014 978-3-658-06554-6
- US EPA 2004
- ACEA https://www.acea.be/statistics/tag/category/share-of-diesel-in-new-passenger-cars April 2019
- Kreuzer , T. , Lox , E. S. , Lindner , D. , and Leyrer , J. Advanced Exhaust Gas Aftertreatment Systems for Gasoline and Diesel Fuelled Vehicles Catalysis Today 29 17 27 1996 10.1016/0920-5861(95)00254-5
- Li , T. and Ogawa , H. Analysis of the Trade-Off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation SAE Int. J. Engines 5 2 94 101 2012 10.4271/2011-01-1847
- Dec , J. E. Advanced Compression-Ignition Engines- Understanding the In-Cylinder Processes Proc. Combust. Inst 32 2727 2742 2009 10.1016/j.proci.2008.08.008
- Takeda , Y. and Keiichi , N. Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection SAE Technical Paper 961163 1996 10.4271/961163
- Harada , A. , Shimazaki , N. , Sasaki , S. , Miyamoto , T. et al. The Effects of Mixture Formation on Premixed Lean Diesel Combustion Engine SAE Technical Paper 980533 1998 10.4271/980533
- Iwabuchi , Y. , Kawai , K. , Shoji , T. , and Takeda , Y. Trial of New Concept Diesel Combustion System - Premixed Compression-Ignited Combustion SAE Technical Paper 1999-01-0185 1999 10.4271/1999-01-0185
- Jochim , B. , Korkmaz , M. , and Pitsch , H. Scalar Dissipation Rate Based Multi-Zone Model for Early-Injected and Conventional Diesel Engine Combustion Combustion and Flame 175 138 154 2017 10.1016/j.combustflame.2016.08.003
- Albrecht , A. , Grondin , O. , Le Berr , F. , and Le Solliec , G. Towards a Stronger Simulation Support for Engine Control Design: A Methodological Point of View Oil & Gas Sci. Technol. - Rev. IFP 62 437 456 2007 10.2516/ogst:2007039
- Bengtsson , J. , Strandh , P. , Johansson , R. , Tunestål , P. et al. Hybrid Modelling of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics - A Survey Int. J. Control 80 1814 1847 2007 10.1080/00207170701484869
- Hillion , M. , Buhlbuck , H. , Chauvin , J. , and Petit , N. Combustion Control of Diesel Engines Using Injection Timing SAE Technical Paper 2009-01-0367 2009 10.4271/2009-01-0367
- Shaver , G. M. , Roelle , M. J. , and Gerdes , J. C. Modeling Cycle-to-Cycle Dynamics and Mode Transition in HCCI Engines with Variable Valve Actuation Control Eng. Pract. 14 213 222 2006 10.1016/j.conengprac.2005.04.009
- Aceves , S. , Flowers , D. , Westbrook , C. , Smith , J. et al. A Multi-Zone Model for Prediction of HCCI Combustion and Emissions SAE Technical Paper 2000-01-0327 2000 10.4271/2000-01-0327
- Aceves , S. , Flowers , D. , Martinez-Frias , J. , Smith , J. et al. A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion SAE Technical Paper 2001-01-1027 2001 10.4271/2001-01-1027
- Babajimopoulos , A. , Lavoie , G. , and Assanis , D. Modeling HCCI Combustion with High Levels of Residual Gas Fraction - a Comparison of Two VVA Strategies SAE Technical Paper 2003-01-3220 2003 10.4271/2003-01-3220
- Babajimopoulos , A. , Assanis , D. N. , Flowers , D. L. , Aceves , S. M. et al. A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model with Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines International Journal of Engine Research 6 5 497 512 2005 10.1243/146808705X30503
- Flowers , D. , Aceves , S. , and Babajimopoulos , A. Effect of Charge Non-Uniformity on Heat Release and Emissions in PCCI Engine Combustion SAE Technical Paper 2006-01-1363 2006 10.4271/2006-01-1363
- Hessel , R. , Foster , D. , Aceves , S. , Davisson , M. et al. Modeling Iso-Octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data over a Range of Lean Equivalence Ratios SAE Technical Paper 2008-01-0047 2008 10.4271/2008-01-0047
- Felsch , C. , Hoffmann , K. , Vanegas , A. , Drews , P. et al. Combustion Model Reduction for Diesel Engine Control Design International Journal of Engine Research 10 6 359 387 2009 10.1243/14680874JER04509
- Zweigel , R. , Thelen , F. , Abel , D. , and Albin , T. Iterative Learning Approach for Diesel Combustion Control Using Injection Rate Shaping 2015 European Control Conference (ECC) Linz 2015 10.1109/ECC.2015.7331021
- Wan , Y. 1997
- Wan , Y. and Peters , N. Scaling of Spray Penetration with Evaporation Atomization and Sprays 9 111 132 1999 10.1615/AtomizSpr.v9.i2.10
- Wan , Y. and Peters , N. Application of the Cross-Sectional Average Method to Calculations of the Dense Spray Region in a Diesel Engine SAE Technical Paper 972866 1997 10.4271/972866
- Hiroyasu , H. Experimental and Theoretical Studies on the Structure of Fuel Sprays in Diesel Engines Proceedings of ICLASS-91, Paper B Gaithersburg, MD, USA 1991
- Hasse , C. and Peters , N. Eulerian Spray Modeling of Diesel Injection in a High Pressure/High Temperature Chamber 11th International Multidimensional Engine Modeling User's Group Meeting Detroit, USA 2002
- Hasse , C. , Vogel , S. , and Peters , N. Modeling of a Daimler-Chrysler Truck Engine Using an Eulerian Spray Model 13th International Multidimensional Engine Modeling User's Group Meeting Cray Inc 2003
- Hiroyasu , H. , Arai , M. , and Nakanishi , K. Soot Formation and Oxidation in Diesel Engines SAE Technical Paper 800252 1980 10.4271/800252
- Wilke , C. R. A Viscosity Equation for Gas Mixtures The Journal of Chemical Physics 18 4 517 519 1950 10.1063/1.1747673
- Reitz , R. D. Modeling Atomization Processes in High-Pressure Vaporizing Sprays Atomisation and Spray Technology 3 309 337 1987
- Patterson , M. and Reitz , R. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission SAE Technical Paper 980131 1998 10.4271/980131
- Bravo , L. and Kweon , C.-B. 2014
- Wehrfritz , A. , Vuorinene , V. , Kaario , O. , and Larmi , M. A High Resolution Study of Non-Reacting Fuel Sprays Using Large-Eddy Simulations ICLASS 2012 Germany 2012
- Miller , R. and Bellan , J. Direct Numerical Simulation of a Confined Three-Dimensional Gas Mixing Layer with One Evaporating Hydrocarbon-Droplet-Laden Stream Journal of Fluid Mechanics 384 293 338 1999 10.1017/S0022112098004042
- Miller , R. S. , Harstad , K. , and Bellan , J. Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Droplet Gas-Liquid Flow Simulations International Journal of Multiphase Flow 24 6 1025 1055 1998 10.1016/S0301-9322(98)00028-7
- Tamanini , F. An Integral Model of Turbulent Fire Plumes Symposium (International) on Combustion 18 1 1081 1090 1981 10.1016/S0082-0784(81)80112-9
- Von Kuensberg Sarre , C. , Kong , S. , and Reitz , R. Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays SAE Technical Paper 1999-01-0912 1999 10.4271/1999-01-0912
- Pitsch , H. , Wan , Y. , and Peters , N. Numerical Investigation of Soot Formation and Oxidation under Diesel Engine Conditions SAE Technical Paper 952357 1995 10.4271/952357
- Pitsch , H. , Barths , H. , and Peters , N. Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach SAE Technical Paper 962057 1996 10.4271/962057
- Barths , H. , Pitsch , H. , and Peters , N. 3D Simulation of DI Diesel Combustion and Pollutant Formation Using a Two-Component Reference Fuel Oil Gas Sci. Technol. Rev. IFP 54 2 233 244 1999 10.2516/ogst:1999020
- Pitsch , H. , Chen , M. , and Peters , N. Unsteady Flamelet Modeling of Turbulent Hydrogen/Air Diffusion Flames 27th International Symposium on Combustion The Combustion Institute 27 1057 1064 1998
- https://ecn.sandia.gov April 2019
- Pickett , L. , Genzale , C. , Bruneaux , G. , Malbec , L. et al. Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities SAE Int. J. Engines 3 2 156 181 2010 10.4271/2010-01-2106
- Pickett , L. , Manin , J. , Genzale , C. , Siebers , D. et al. Relationship between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction SAE Int. J. Engines 4 1 764 799 2011 10.4271/2011-01-0686
- Skeen , S. A. , Manin , J. , and Pickett , L. M. Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames Proceedings of the Combustion Institute 35 3 3167 3174 2015 10.1016/j.proci.2014.06.040
- https://www.cmt.upv.es/ECN03.aspx June 2019
- Richards , K. J. , Senecal , P. K. , and Pomraning , E. 2017
- Senecal , P. K. , Pomraning , E. E. , Richards , K. J. , and Som , S. S. Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations ASME, J. Energy Resour. Technol. 136 1 012204 012204-11 2013 10.1115/1.4024861
- Wang , M. M. , Raju , M. M. , Pomraning , E. E. , Kundu , P. P. , Pei , Y. Y. , and Som , S. S. Comparison of Representative Interactive Flamelet and Detailed Chemistry Based Combustion Models for Internal Combustion Engines ASME Internal Combustion Engine Division Fall Technical Conference 10.1115/ICEF2014-5522
- Barths , H. , Hasse , C. , Bikas , G. , and Peters , N. Simulation of Combustion in Direct Injection Diesel Engines Using a Eulerian Particle Flamelet Model Proceedings of Combustion Institute 28 1 1161 1168 2000 10.1016/S0082-0784(00)80326-4
- D’Errico , G. , Lucchni , T. , Contino , F. , Jangi , M. et al. Comparison of Well-Mixed and Multiple Representative Interactive Flamelet Approaches for Diesel Spray Combustion Modelling Combustion Theory and Modeling 18 1 65 88 2014 10.1080/13647830.2013.860238
- Davidovic , M. , Falkenstein , T. , Bode , M. , Cai , L. et al. LES of N-Dodecane Spray Combustion Using a Multiple Representative Interactive Flamelets Model Oil & Gas Science and Technology - Revue d'IFP Energies Nouvelles 72 5 2017 10.2516/ogst/2017019
- Frassoldati , A. , D’Errico , G. , Lucchini , T. , Stagni , A. et al. Reduced Kinetic Mechanisms of Diesel Fuel Surrogate for Engine CFD Simulations Combustion and Flame 162 10 3991 4007 2015 10.1016/j.combustflame.2015.07.039
- Yao , T. , Pei , Y. , Zhong , B.-J. , Som , S. et al. A Compact Skeletal Mechanism for N-Dodecane with Optimized Semi-Global Low-Temperature Chemistry for Diesel Engine Simulations Fuel 191 339 349 2017 10.1016/j.fuel.2016.11.083
- Cai , L. , Kröger , L. , and Pitsch , H. Reduced and Optimized Mechanism for N-Dodecane Oxidation Fifteenth International Conference on Numerical Combustion April 19th - 22nd Avignon, France 2015
- Knudsen , E. and Shashank , Pitsch Modeling Partially Premixed Combustion Behavior in Multiphase LES Combustion Flame 162 1 159 180 2015 10.1016/j.combustflame.2014.07.013
- Bode , M. , Davidovic , M. , and Pitsch , H. Towards Clean Propulsion with Synthetic Fuels: Computational Aspects and Analysis Nagel W. , Kröner D. , Resch M. High Performance Computing in Science and Engineering’18 Springer Cham 2019 10.1007/978-3-030-13325-2_12
- Luo , Z. , Som , S. , Mani Sarathy , S. , Plomer , M. et al. Development and Validation of an N-Dodecane Skeletal Mechanism for Spray Combustion Applications Combustion Theory and Modelling 18 2 187 203 2014 10.1080/13647830.2013.872807
- Pickett , L. M. and Siebers , D. L. Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure Combustion an Flame 138 1-2 114 135 2004 10.1016/j.combustflame.2004.04.006