This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Global Temperature Mapping and Crystallization Analysis of Supercooled Water Droplet Freezing Using Luminescent Imaging Technique
Technical Paper
2019-01-2009
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
A prominent environmental phenomenon that greatly affects many industries including automotive, aeronautics, energy transmission, etc. is icing. One mechanism by which this occurs and plagues our machines and infrastructures that are exposed to the atmosphere is the icing of supercooled water droplets on a surface - either by impact against a surface or spontaneous nucleation and crystallization of a droplet at rest. The process by which nucleation propagates during the liquid-to-solid phase change and the thermodynamic implications in regards to latent heat generation and transfer are not fully understood on the single droplet scale. An attempt to better resolve these unknowns in both spatial and temporal domains has been made here. Previous efforts have implemented a unique temperature sensing technique utilizing luminescent dyes. A thermally sensitive luminescent paint coated onto the surface of interest allows direct mapping of the heat transfer from the supercooled liquid droplet undergoing freezing to the surface. This technique also provides insight into the nucleation propagation speed along the droplet-substrate interface. This, in conjunction with a high-speed color camera and an intense ultraviolet light source are used to accurately resolve the thermal energy within the freezing droplet in both space and time. Synchronization of the thermal data of the droplet with the measurements of transverse heat transfer through the impact surface allow an estimation of heat generation and loss to the environment - key factors in current modelling and simulation efforts used by researchers and industry to predict ice accretion and to better mitigate it.
Recommended Content
Technical Paper | Two-Way Flow Coupling in Ice Crystal Icing Simulation |
Technical Paper | FENSAP-ICE: 3D Simulation, and Validation, of De-icing with Inter-cycle Ice Accretion |
Citation
Patterson, W. and Sakaue, H., "Global Temperature Mapping and Crystallization Analysis of Supercooled Water Droplet Freezing Using Luminescent Imaging Technique," SAE Technical Paper 2019-01-2009, 2019, https://doi.org/10.4271/2019-01-2009.Also In
References
- Heymsfield , A.J. and Miloshevich , L.M. Homogeneous Ice Nucleation and Supercooled Liquid Water in Orographic Wave Clouds Journal of the Atmospheric Sciences 50 15 2335 2353 1993
- Potapczuk , M.G. Aircraft Icing Research at NASA Glenn Research Center J. Aerosp. Eng. 26 2 260 276 2013
- NTSB 1 1997
- Sakaue , H. , Morita , K. , Kimura , S. 2016 10.1016/j.ijmultiphaseflow.2016.06.002
- Iijima Y. , Egami Y. , Nishizawa A. , Asai K. et al. Development of Temperature Sensitive Paint formulation for Large-Scale Cryogenic Wind Tunnels International Congress on Instrumentation in Aerospace Simulation Facilities 2003 70 76
- Tanaka , M. , Morita , K. , Kimura , S. , and Sakaue , H. Time-Resolved Temperature Distribution of Icing Process of Supercooled Water in Microscopic Scale 6th AIAA Atmospheric and Space Environments Conference 2014
- Lackowitz J. R. Principles of Fluorescence Spectroscopy New York, NY Kluwer Academic/Plenum Publishers 1999
- Liu , T. and Sullivan , J. Pressure and Temperature Sensitive Paints Berlin Springer-Verlag 2004
- Ijima Y. , Egami Y. , Nishizawa A. , and Asai K.
- Morita , K. and Sakaue , H. Characterization Method of Hydrophobic Anti-Icing Coatings Review of Scientific Instruments 86 11 2015
- Patterson , W.C. , Morita , K. , and Sakaue , H. Time-Resolved Thermal Study of Accelerated Supercooled Droplet Impact 9th AIAA Atmospheric and Space Environments Conference