This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

Journal Article
2019-01-0662
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 02, 2019 by SAE International in United States
The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles
Sector:
Citation: Brandt, A., Berg, H., Bolzon, M., and Josefsson, L., "The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(3):1279-1299, 2019, https://doi.org/10.4271/2019-01-0662.
Language: English

References

  1. Hucho, W.H. , Aerodynamics of Road Vehicles Fourth Edition (Warrendale: SAE International, 1998). ISBN:0768000297.
  2. Barnard, R.H. , Road Vehicle Aerodynamic Design Second Edition (St Albans: Mechaero Publishing, 2001). ISBN:0954073401.
  3. Schütz, T. , Aerodynamics of Road Vehicles Fifth Edition (Warrendale: SAE International, 2015). ISBN:0768079772.
  4. Council of European Union , “Regulation (EU) No. 333/2014 of the European Parliament and of the Council,” https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.103.01.0015.01.ENG, 2014.
  5. Schnepf, B., Schütz, T., and Indinger, T. , “Further Investigations on the Flow Around a Rotating, Isolated Wheel and Detailed Tread Pattern,” SAE Technical Paper 2015-01-1554 , 2015, doi:10.4271/2015-01-1554.
  6. Mayer, W. and Wiedemann, J. , “The Influence of Rotating Wheels on Total Road Load,” SAE Technical Paper 2007-01-1047, 2007, doi:10.4271/2007-01-1047.
  7. Wäschle, A. , “The Influence of Rotating Wheels on Vehicle Aerodynamics - Numerical and Experimental Investigations,” SAE Technical Paper 2007-01-0107 , 2007, doi:10.4271/2007-01-0107.
  8. Qui, Z. , “Wheel Aerodynamic Developments by Module-Based Prototype Rims and Stationary Rim Shields,” Master’s thesis, Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, 2009.
  9. Landström, C., Josefsson, L., Walker, T., and Löfdahl, L. , “An Experimental Investigation of Wheel Design Parameters with Respect to Aerodynamic Drag,” in 9th FKFS Conference, Progress in Vehicle Aerodynamics and Thermal Management, Stuttgart, 2011.
  10. Vdovin, A., Bonitz, S., Landström, C., and Löfdahl, L. , “Investigation of Wheel Ventilation-Drag Using a Modular Wheel Design Concept,” SAE Technical Paper 2013-01-0953 , 2013, doi:10.4271/2013-01-0953.
  11. Kremheller, A. , “Development Method for Aerodynamic Wheel Designs using Wind Tunnel and CFD,” in EADE Meeting, UK, 2016.
  12. Mercker, E., Breuer, N., Berneburg, H., and Emmelmann, H.J. , “On the Aerodynamic Intereference Due to Rolling Wheels of Passenger Cars,” SAE Technical Paper 910311 , 1999, doi:10.4271/910311.
  13. Croner, E., Bézard, H., Sicot, C., and Mothay, G. , “Aerodynamic Characterization of the Wake of an Isolated Rolling Wheel,” International Journal of Heat and Fluid Flow 43:233-243, 2013, doi:10.1016/j.ijheatfluidflow.2013.04.008.
  14. Huminic, A. and Huminic, G. , “Aerodynamic Study of a Generic Car Model with Wheels and Underbody Diffuser,” International Journal of Automotive Technology 18(3):397-340, 2017, doi:10.1007/s12239-017-0040-6.
  15. Gleason, M., Duncan, B., Walter, J., Guzman, A. et al. , “Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results,” SAE Technical Paper 2015-01-1556, 2015, doi:10.4271/2015-01-1556.
  16. Landström, C., Walker, T., Christoffersen, L., and Löfdahl, L. , “Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car,” SAE Technical Paper 2011-01-0165 , 2011, doi:10.4271/2011-01-0165.
  17. Elofsson, P. and Bannister, M. , “Drag Reduction Mechanisms due to Moving Ground and Wheel Rotation in Passenger Cars,” SAE Technical Paper 2002-01-0531 , 2001, doi:10.4271/2002-01-0531.
  18. Sternéus, J., Walker, T., and Bender, T. , “Upgrade of the Volvo Cars Aerodynamic Wind Tunnel,” SAE Technical Paper 2007-01-1043, 2007, doi:10.4271/2007-01-1043.
  19. Ljungskog, E., Sebben, S., Broniewicz, A., and Landström, C. , “A Parametric Study on the Influence from Boundary Conditions on the Longitudinal Pressure Gradient in CFD Simulations of an Automotive Wind Tunnel,” Journal of Mechanical Science and Technology 31:2821-2827, 2017, doi:10.1007/s12206-017-0525-2.
  20. Robertsson, V. , “Development of a New Cost-Efficient Procedure for Evaluation of Wheel Design Aerodynamic Performance,” Master’s thesis, Department of Product and Production Development, Chalmers University of Technology, Gothenburg, 2017.
  21. Landström, C. , “Passenger Car Wheel Aerodynamics,” Ph.D. thesis, Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, 2011.
  22. Aeropobe , https://www.aeroprobe.com/omniprobe/#1492296220035-2d83d6ab-26fe, Aug. 2018.
  23. Landström, C., Löfdahl, L., and Walker, T. , “Effects of Ground Simulation on the Aerodynamic Coefficients of Production Car in Yaw Conditions,” SAE Technical Paper 2010-01-0755 , 2010, doi:10.4271/2010-01-0755.
  24. Siemens , “STAR-CCM+ User Guide,” Version 12.04.011, 2017.
  25. Landström, C., Löfdahl, L., Josefsson, L., and Walker, T. , “Aerodynamic Effects of Different Tyre Models on a Sedan Type Passenger Car,” SAE Technical Paper 2012-01-0169 , 2012, doi:10.4271/2012-01-0169.
  26. Hobeika, T. and Sebben, S. , “Tyre Pattern Features and Their Effects on Passenger Vehicle Drag,” SAE Technical Paper 2018-01-0710 , 2019, doi:10.4271/2018-01-0710.
  27. Qiu, Z., Landström, C., Löfdahl, L., and Josefsson, L. , “Wheel Aerodynamic Developments on Passenger Cars by Module-Based Prototype Rims and Stationary Rim Shields,” in FISTA Automotive World Congress, Budapest, Hungary, 2010.
  28. Bolzon, M.D., Sebben, S., and Broniewicz, A. , “The Effects of a Rim’s Configuration on a Wheel’s Flow Physics,” in International Conference on Vehicle Aerodynamics, Birmingham, UK, 2018.

Cited By